资源描述:
振 动 与 冲 击 第 39 卷第 23 期JOURNAL OF VIBRATION AND SHOCKVol. 39 No.23 2020 基金项目 国家自然科学基金(51578505) 收稿日期 2019 -03 -19 修改稿收到日期 2019 -08 -30 第一作者 石俊阳 男,硕士生,1994 年生 通信作者 谢霁明 男,博士,教授,博士生导师,1955 年生 双子塔气动力及其相关性对间距的敏感度研究 石俊阳, 谢霁明 (浙江大学 建筑工程学院,杭州 310058) 摘 要超高层双子塔的气动干扰和荷载相关性是描述其风荷载并进行抗风优化的重要参数,而双塔之间的间距 对这两个特性有重要影响。 利用同步测压的风洞试验方法,确定不同风向下双子塔上的风荷载与双塔相邻间距大小之间 的函数关系,之后借助相关系数和相干函数分别在时域和频域中研究了不同间距下风荷载的相关性。 结果表明在大多 数情况下,随着双塔之间间距的减小,每个塔上的风荷载尤其是横风向脉动荷载趋于减小;双塔横风向脉动荷载在多个间 距下表现为负相关关系,该负相关性在双塔沿风向前后排列时更为明显。 所得研究结果揭示了间距的选取在双子塔抗风 优化中的重要作用,并对连体的设计具有指导意义。 关键词 双子塔;气动干扰;荷载相关性;双塔间距影响;风洞试验研究;同步压力积分 中图分类号 TU312. 1 文献标志码 ADOI10. 13465/ j. cnki. jvs. 2020. 23. 002 Sensitivity of twin⁃tower’s aerodynamic forces and their correlation to spacing SHI Junyang, XIE Jiming (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China) Abstract Aerodynamic interference and load correlation between twin⁃tower are important parameters to describe wind loads and do wind⁃resistant optimization, and the spacing between twin⁃tower has important effects on these parameters. Here, using the synchronous pressure integration (SPI) method, wind tunnel tests were performed to determine the function relationship between aerodynamic forces on twin⁃tower under conditions of different wind directions and spacing. Wind load correlations under different spacings were studied in time domain and frequency one, respectively by means of correlation coefficient and coherence function. Results indicated that in most cases, with decrease in spacing, wind load on each tower, in particular, cross wind fluctuating load tends to decrease; cross wind loads on twin⁃tower under multiple spacings reveal negative correlation, the negative correlation is more obvious when the twin towers are arranged forward and backward along wind direction; the selection of spacing plays an important role in twin⁃tower’s wind resistance optimization, and has a guiding significance for the design of conjoined body. Key words twin⁃tower; aerodynamic interference; load correlation; effects of spacing between two towers; wind tunnel tests; synchronous pressure integration (SPI) 双子塔以其优越的建筑功能和美学效果而日益得 到设计人员的青睐。 与超高层独塔类似,风荷载是超 高层双子塔水平方向的主要控制荷载[1],然而双子塔 两个塔楼间不可避免的气动干扰使其风效应远比独塔 超高层复杂[2]。 在目前抗风设计中,针对双子塔的空 气动力学特性研究的文献资料尚不足,现有的建筑荷 载规范也大多没有充分考虑或忽视了两塔之间的气动 干扰影响[3],因此双子塔的抗风设计方法通常是借助 独栋的思路,这就导致双子塔的设计风荷载往往与实 际情况有较大出入,同时双子塔的设计在间距选取时 也未能将风效应作为考虑因素。 呼和敖德等[4]研究了双塔串列时的绕流特性,得 出上游建筑“遮挡效应”对下游建筑的影响随间距变化 明显;Xie 等[5⁃7]试验得到在侧向的高层建筑的气动干 扰下,受扰建筑相对单栋楼顺风向脉动风荷载将增大, 但横风向风荷载将减小;Lam 等[8⁃9]发现建筑群中的加 速气流所引起的负压使得相邻建筑受到的干扰效应明 显;冯永伟等[10]发现风向角对某双塔建筑的绕流影响 较大,当来流与建筑连线平行时,建筑受到的风荷载将 会明显增大;Sakamoto 等[11⁃12]得到两个建筑在串列时 风荷载的相位随间距成比例变化,同时 Xie 等[13]发现 该布置下两个建筑主要呈现反向运动;Bubryur 等[14]通 过对连体双塔气动荷载的模态分布分析,得出不同的 间距下风荷载在一阶与二阶模态的分布也将不同。 已有的研究在描述超高层双子塔的风荷载方面存 在不足,主要原因在于 (1) 已有的研究多针对具体的双子塔工程,多关 注于其中一栋塔楼(称为“施扰建筑”)对另一栋塔楼 (称为“受扰建筑”)气动影响。 而对双子塔整个结构 系统的风效应以及间距变化对风荷载的影响研究 较少。 (2) 对于连体双子塔建筑,连体结构(如天桥)对 减小两栋塔上同相位的风致响应影响很小,但对反相 位的风致响应则有明显帮助[15],所以更关注两栋塔楼 上反相位的风荷载。 而风荷载的相位又与双塔间距有 关,所以研究双子塔上不同间距下气动力的相关性对 提高连体构件的抗风设计有着重要的指导意义。 (3) 由于双子塔气动干扰与相关性研究中涉及的 建筑物间距较近且两塔对称布置,与一般的建筑群体 干扰效应研究中的关注的间距范围不同,群体干扰效 应的研究成果对描述双子塔气动特性并不适用。 为此,本文通过风洞试验得到双塔间距从0. 25D ~ 2. 0D(D 为塔楼的典型宽度)的测压数据,以此得出双 子塔的气动力及其相关性,并对其相对于双塔间距的 敏感度进行精细化研究。 首先讨论了 3 个主要风向角 下双子塔平均风荷载与脉动风荷载随间距的变化以及 相对单塔时的变化,分析了双子塔气动干扰效应在不 同间距下的特点,然后通过研究两塔脉动风荷载的相 关系数与相干函数,得出作用在两栋塔楼上的风荷载 在不同间距下在时域与频域内的相关性。 1 风洞试验设计 1. 1 流场设置 本文采用同步压力积分方法(Synchronous Pressure Integration,SPI)进行风洞测压试验,试验在浙江大学 ZD1 边界层风洞中进行。 试验风场选取地貌粗糙度指 数 α =0. 15、缩尺比 1∶ 300 的 B 类地貌风场,试验中模 型高度的试验风速 12 m/ s,平均风速剖面与湍流度剖 面,如图 1(a)所示。 风场 0. 5 m 高度(原型 150 m 高 度)处归一化风速谱与理论谱的对比结果,如图 1(b) 所示,模拟的风谱与 Karman 谱最为接近。 1. 2 试验模型与测试参数 试验模型采用两个相同的刚性方柱模型,模型尺 寸为[宽(D) 长(L) 高(H)]15 cm 15 cm 100 cm。 测试中在两栋楼上沿建筑高度方向分别布置 A1 ~ A6 与 B1 ~ B6 层共 480 个测点来监测建筑上的风压 时程,每一层布置 40 个测点于四个侧面。 每个测点埋 设的铜管内径为0. 7 mm,测压管与建筑表面垂直。通 (a) 风速和湍流度剖面试验结果 (b) 0. 5 m(原型 150 m)高度功率谱曲线 图 1 试验风场测试结果 Fig. 1 Testing results of wind field 过 DSM3400 电子扫描阀同步测定建筑表面风压,时程 数据的采样频率为 312. 5 Hz,采样时长为 90 s。 测点 在模型上的分布位置,如图 2 所示。 通过风洞测压试验得出试验模型的无量纲化的气 动参数,以此对各工况的风荷载进行评估。 风压监测 结果处理后的气动力参数包括阻力系数(顺风向)与升 力系数(横风向),其定义为 阻力系数 CD= FD 0. 5ρU2HD (1) 升力系数 CL= FL 0. 5ρU2HD (2) 式中FD和 FL分别为模型整体受到的气动阻力与升 力;U 为试验风速;ρ 为空气密度;D 为垂直于风向的模 型截面宽度;H 为模型竖向高度。 1. 3 试验工况设置 考虑到不同风向角下风荷载的不同作用,选取 0 (双柱并列)、45和 90(双柱串列)等三个典型风向角 进行风荷载的评估,各风向角下双柱的布置方式与试 验现场,如图 3 所示。 为方便表达双方柱的间距,本文 采用间距比 S/ D(S 为双塔相对面之间的间距,D 为单 塔方形截面边长)来表征间距。 为了分析双子塔两个塔楼之间的间距对双子塔空 气动力学特性的重要影响,根据实际的超高层双子塔 9第 23 期石俊阳等 双子塔气动力及其相关性对间距的敏感度研究 (a) 各层测点布置高度(mm) (b) 横截面布置方式 图 2 建筑模型与测点布置 Fig. 2 Model and distribution of pressure taps (a) 0风向角试验布置 (b) 45风向角试验布置 (c) 90风向角试验布置 图 3 风向角示意及试验现场布置 Fig. 3 Wind direction setting and the layout of test site 中常见的间距范围(通常为横截面特征长度的两倍以 内),试验设置了两塔间距为 0. 25D、0. 50D、0. 75D、 1. 00D、1. 25D、1. 50D、1. 75D、2. 00D 共 8 个间距来进 行研究,通过对试验中不同间距下得到的 3 个风向角 01振 动 与 冲 击 2020 年第 39 卷 下的阻力系数与升力系数进行分析,通过以上共 24 个 工况下的试验来得出在各个间距下双塔之间的空气动 力干扰效应。 作为比较,还同时进行其中一栋塔楼的单塔风洞 试验,包括单楼工况(即 0与 90)及单楼 45工况,以 便于对双子塔的气动干扰结果与单塔时的风荷载进行 对比分析。 单塔也可作为一种极端情况,代表间距增 大至气动干扰可以忽略。 2 不同间距下气动干扰效应分析 超高层双子塔受到的风荷载包括平均风荷载与脉 动荷载风两部分,以下分别对双子塔的气动干扰效应 对平均风荷载和对脉动风荷载的影响随间距的变化进 行分析。 2. 1 气动干扰对平均风荷载的影响 图 4 给出两塔阻力系数与升力系数的均值随相对 间距的变化规律。 由图 4 中阻力系数 CD均值可以看出顺风向平均 风荷载的变化,对于 A 塔,在 0风向角下,A 塔在间距 大于 0. 50D 时受到的阻力大于另外两个风向角下的阻 力,且随间距变化逐渐上升,当间距超过 1. 25D 后受到 的阻力将大于单栋楼受到的阻力;在 45风向角下受到 的阻力系数小于另外两个风向角下的阻力系数,并且 随着间距从 0. 25D 开始增大时 A 塔受到的阻力快速下 降;90风向角下,在间距为 0. 25D 时,A 塔的阻力与单 栋楼时受到的阻力接近,但随着间距的增大平均阻力 缓慢下降并低于单楼。 图 4 两塔的阻力系数与升力系数均值 Fig. 4 Mean values of CDand CLof two towers 对于 B 塔,在两塔并列对称布置的 0风向角下两 塔阻力相近;45风向角下 B 塔的阻力系数随着间距增 大首先快速上升,然后平稳增加;90风向角下,在上游 A 塔的“遮挡效应” 影响下 B 塔的阻力在 0. 25D ~ 1. 25D时为负值,随着间距继续增加,两塔间的加速气 流减弱同时 A 塔的分离尾流重新附着在下游建筑物 上,此后 B 塔受到的阻力由负变正,双子塔空气动力学 特性的相互影响逐渐变弱。 对于横风向平均风荷载,升力系数 CL均值均较 小,在 0风向角下,由于两塔受到并列布置产生的“狭 道效应”影响,两个塔楼相对侧面之间形成的加速气流 区引起明显的负压[16],所以 A、B 两塔 CL均值不为 0 且平均升力相背方向作用。 在相对间距为 0. 8 左右 时,升力绝对值达到最大。 当间距继续增大后“狭道效 应”作用减弱,两塔升力绝对值也逐渐减小;在 45风向 角下,平均升力的变化规律与 0风向角时类似,但升力 绝对值随相对间距呈单调下降趋势。 并向 0 靠近;在 90风向角下因为 A、B 塔为沿顺风向串列布置,各间距 11第 23 期石俊阳等 双子塔气动力及其相关性对间距的敏感度研究 下 CL均值稳定在 0 左右。 从数据结果中还可以看到一个现象,在 0风向角 并列布置的情况下,沿风向对称的 A、B 两塔受到的平 均气动力稍有差别,这是由并列双柱的稳态偏流特性 引起[17]。 当两并列双方柱的间距较小时,柱间的缝隙 流将稳定地偏向其中一个方柱或随时间改变方向的偏 向某一个方柱[18],由此造成偏向柱受到较大的平均气 动力作用,其他 0并列工况下气动参数的偏差同样由 该特性作用引起。 2. 2 气动干扰对脉动风荷载的影响 对于超高层建筑而言,脉动风对建筑的动力作用 往往比平均风对建筑的静力作用受到更多的关注,因 此双子塔之间脉动风荷载的干扰效应的研究是一项非 常重要的工作。 通过比较不同排列方式下 A、B 两塔阻 力系数 CD和升力系数 CL的脉动分量的均方根(Root Mean Square,RMS),以此得出作用于建筑上的动力荷 载的变化。 图 5 给出两塔阻力系数与升力系数的标准 差随相对间距的变化规律。 图 5 两塔阻力系数与升力系数脉动值 RMS Fig. 5 RMS of fluctuating values of CDand CLof two towers 图 5 中,A 塔和 B 两塔的顺风向脉动风荷载在 0 和 90风向角下较为接近,与单楼的顺风向脉动风荷载 相比在多个间距下略微增加,且都高于 45风向角下。 另外在 90风向角下 B 塔的脉动风荷载将随着间距的 增大而持续升高,这主要是间距增大后上游方柱的旋 涡脱落直接作用在 B 塔上引起[19]。 对于横风向,单塔和双子塔都受到明显高于顺风 向的脉动风荷载,同时由于双子塔之间的绕流干扰对 彼此的旋涡脱落有明显的抑制作用,双子塔受到的横 风向脉动风荷载小于单塔。 在 0和 90风向角下两塔 均呈随间距增大而增大的趋势,同时两个风向角下的 脉动风荷载明显大于 45风向角下的脉动风荷载,但 90风向角下的脉动风荷载在间距小于 1. 00D 时随间 距的变化幅度较小,间距继续增大后脉动荷载开始缓 慢随间距线性上升;而在 0风向角下,随着双塔间距在 0.25D ~2. 00D 内增大,因为当间距较大时两个单塔将 分别单独形成旋涡脱落,两塔的脉动风荷载上升明显 且与间距近似成正比关系,可以看到间距大于 1. 0D 之 后,双塔并列时的横风向干扰将大于串列时的横风向 干扰;45风向角下由于单塔迎风方向不易发生旋涡脱 落同时在两塔互相干扰形成的两侧不对称气流作用 下,脉动风荷载较小。 图 5 中 90风向角下在 L/ D = 1. 0与 2. 0 时,B 塔的升力系数脉动 RMS 分别为 0. 224 与 0. 316,相应的独塔升力系数脉动 RMS 为 0. 387,两 者之比为 0. 58 与 0. 82。 这与文献[12]报道的类似情 况下由试验得到的降低比 0. 60 和 0. 85 基本一致。 2. 3 气动干扰对横风向风荷载功率谱的影响 脉动风荷载对超高层建筑设计风荷载的重要性主 要是通过引起结构振动并进而产生惯性力来体现的。 所以研究气动干扰对脉动风荷载频谱成分的影响具有 21振 动 与 冲 击 2020 年第 39 卷 重要的意义。 为了在频域内得出双塔横风向脉动风荷载特性随 间距的变化,对 3 个风向角下的横风向气动力功率谱 S(f)进行分析。 为了使试验结果具有一般性,我们将 试验结果用约化频率 fD/ U,和约化谱 S∗来表示,其中 f 为频率,S∗= fS/ (0. 5U2H)2。 图 6 给出了单楼与不同 间距时 A、B 两塔无量纲化的荷载功率谱曲线。 (a) (b) (c) (d) (e) (f) 图 6 3 个风向角下双塔横风向风力谱 Fig. 6 Across⁃wind load spectrums of two towers in three wind directions 从图 6 可以看出双子塔的谱峰相对于单楼在斯托 罗哈数 St = fD/ U≈0. 10 处对应的峰值有所削弱,这代 表双子塔上的风横向激励大小相比单塔情况均有不同 程度的降低。 在 0风向角下,双子塔 A、B 两塔的气动 力谱的峰值频率随着间距变小而增大,同时 A、B 两塔 的峰值大小随着间距的变小而变小。 这代表随着间距 的变小,由涡脱主导的横风向风振的临界风速会有一 定程度的降低,但出现临界风速时的响应幅值也会有 所减低。 在 45角下两塔的谱峰整体较小,两塔在多个 间距下谱峰并不明显,整体上 A 塔的峰值高于 B 塔;而 在 90风向角下,双子塔的峰值频率随着间距变小而减 小,同时 A、B 两塔的峰值大小也随着间距的变小而减 小。 这代表随着间距的变小,由涡脱主导的横风向风 振的临界风速会有一定程度的提高,同时出现临界风 速时的响应幅值还会有所减低。 双塔之间的干扰作用 影响了两塔的斯托罗哈数,因此双子塔相对独塔时气 动特性改变较大,在计算结构风效应时并不适合简单 沿用单塔的计算方法。 3 不同间距下风荷载的相关性研究 为了进一步理解双子塔整体脉动风荷载相对单塔 脉动风荷载的特殊性,需要分析双塔之间的脉动风荷 载的相关性及其随着间距的变化。 双子塔主要受横风 向脉动风荷载作用,其相关性将对双子塔的整体受力 特性产生重要影响,因此取横风向脉动风荷载为研究 对象。 3. 1 横风向脉动风荷载的相关系数 首先 采 用 双 子 塔 之 间 风 荷 载 的 相 关 系 数 (Correlation Coefficient)来分析作用在两个塔楼上的脉 动风荷载在时程上的相关关系。 相关系数定义如下 r(ClA,ClB) = Cov(ClA,ClB) Var[ClA] Var[ClB] (3) 式中ClA和 ClB分 别 为 A 塔 和 B 塔 的 升 力 系 数; Cov(ClA,ClB)为 ClA和 ClB的协方差;Var[ClA]为 ClA的 方差;Var[ClB]为 ClB的方差。 由图 7 可知,对于作用在两个塔楼上的横风向风 荷载之间的相关系数,在 0和 90两个风向角下,除了 间距 0. 25D 时在 0风向角下两塔横风向风荷载相关系 数为正值(但数值很小),其他工况下相关系数均为负 值,即双塔的横风向风荷载主要表现为负相关关系。 在 90风向角下,由于下游塔楼直接受上游塔楼的尾流 作用,当间距为 0. 80D ~1. 00D 时,负相关性达到最大, 相关系数在 -0. 70 左右;当间距继续增大,两塔横向风 荷载相关性将逐渐减弱,当间距在 2. 0D 时相关性只有 -0. 1 左右较小,两者负相关性变得不再明显。 0风向 角下的负相关性在间距为 0. 25D ~ 1. 25D 时将持续随 31第 23 期石俊阳等 双子塔气动力及其相关性对间距的敏感度研究 间距增大而增强,然后当间距继续增大相关系数将在 -0. 40 左右浮动。 而在45风向角下,横风向荷载的相 关性随间距的增大由正变负,但相关系数整体上较小。 图 7 两塔升力系数 CL的相关系数 Fig. 7 Correlation coefficients of CLof two towers 3. 2 横风向脉动风荷载的相干函数 相干函数(Coherence Functions)指两个信号在各 频率上分量间的相关程度,是描述不同空间位置脉动 风荷载在频域内相关程度的重要物理量。 作用在两个 单塔上的风荷载之间的相干函数计算方法如下 CAB(f) = GAB(f) GAA(f)GBB(f) (4) 式中GAB(f)为 A 塔和 B 塔上横向风荷载互谱密度; GAA(f)和 GBB(f)分别为 A 塔和 B 塔上横向风荷载自谱 密度。 取相干函数 GAB(f)的模 GAB(f) 为风荷载相干函 数的数值,取 GAB(f)在复平面上的幅角值的绝对值为 相干函数的相位差值,将相干函数的模与相位差这两 个参数同时考虑进行分析。 3 个风向角下双塔横风向 风荷载相干函数分别如图 8 ~10 所示。 图 8 0下横风向风荷载相干函数 Fig. 8 Coherence function of across⁃wind load in 0 direction 从图 8 中不同间距下双子塔两个塔楼横向风荷载 之间的相干函数的模与相位值可以看出,在 0风向角 下,当间距为 0. 5D 时相干函数的值在较小范围内波 动,此时两塔风荷载在频域内的相关性尚不明显;随着 间距增大至超过 1. 0D 后,相干函数在两塔的斯托罗哈 数附近将出现明显的峰值,同时在对应峰值的相近频 段内相干函数的相位值接近 π,即在该频段内两者处 于反相位状态;随着间距继续增大,相干函数的峰值大 小、峰值对应的频段以及峰值对应的相位变化均较小, 1. 0D ~ 2. 0D 间距内横风向脉动风荷载在频域中的相 关性较为稳定。 由此可知,当两塔之间的间距增大至 超过 1. 0D 后,两塔的风荷载之间将在频域内呈现出负 相关关系。 由图 9 可知,在 45风向角下,当间距为 0. 5D 时相 干函数的值在低频段较小,约化频率 0. 1 左右出现一 个较小的峰值,对应的相位值也较低,有较小的正相关 特性;当间距增大到 1. 0D 是低频段的相干函数数值在 0. 5 左右波动,对应的相位差也变化较大,此时两者相 关关系并不明显;当间距继续增大至 1. 5D,出现一个 较小的峰值,对应的相位差偏向 π,表现出较小的负相 关性;当间距达到 2. 0D,相干函数峰值增大,其相位差 在 0. 75π附近,表现出一定的负相关关系。因此,在 41振 动 与 冲 击 2020 年第 39 卷 图 9 45下横风向风荷载相干函数 Fig. 9 Coherence function of across⁃wind load in 45 direction 图 10 90下横风向风荷载相干函数 Fig. 10 Coherence function of across⁃wind load in 90 direction 45风向角下,两塔的风荷载相关关系在频域内随间距 不断变化,但整体的相关性较小。 从图 10 可以得到,在 90 风向角下,当间距自 0. 50D开始增大时,两塔的横风向风荷载在低频区域内 相干函数值均较高,并且对应的相干函数相位接近 π, 即两者处于反相位状态,因此在频域内表现出较高的 负相关性;当间距继续增大至 2. 0D 时,相干函数出现 峰值,且集中的频段对应的相位差将减小,此时两塔的 横风向风荷载在频域内的负相关性减弱。 分析结果证实,作用在双子塔的两个塔楼上的风 荷载以负相关为主。 因此双子塔上的风荷载将会产生 一个整体的扭矩,这对于结构连接的双子塔抗风设计 非常重要。 这也是有别于单塔设计的一个重要方面。 工程设计中应当将横风向脉动风荷载的负相关性作为 51第 23 期石俊阳等 双子塔气动力及其相关性对间距的敏感度研究 间距选取的考虑因素,对应间距下风荷载的相关性也 可作为连体设计的依据。 4 结 论 (1) 双子塔在所研究的间距 0. 25D ~2. 00D 内受 到的横风向脉动风荷载相对于单楼情况有明显减小, 并且顺风向平均风荷载也有一定的降低。 同时双塔之 间的干扰作用影响了两塔的斯托罗哈数,使得双子塔 的气动特性相对单塔有较大改变。 这表明传统的独塔 抗风设计方法对于双子塔设计而言并不完全适用。 (2) 双子塔的气动干扰效应受间距的影响十分显 著,两塔在 0风向角下受到更大的平均风荷载作用,当 间距自 2. 00D 开始减小时平均风荷载大致呈线性下 降;双子塔的间距在 0. 25D ~ 1. 0D 及 1. 25D ~ 2. 00D 时,将分别在 90风向角和 0风向角下受到更大的脉动 风荷载作用,并且 0风向角下脉动风荷载随间距的减 小将明显成比例下降。 因此在双子塔设计阶段,间距 的选择需重点考虑其对风效应的影响。 (3) 对于作用在双子塔上的横风向风荷载,从时 域与频域的角度同时分析得出两塔间距在 0. 50D ~ 2. 00D内多表现出负相关性,其中 90风向角时这种负 相关关系更加明显。 这表明双子塔的两个塔楼通常受 到反向的动力风荷载作用,连体设计也应考虑这种组 合扭转动力荷载的作用。 参 考 文 献 [ 1] 沈国辉, 王宁博, 孙炳楠, 等. 基于风洞试验的高层建筑 风致响应和等效风荷载计算[J]. 浙江大学学报(工学 版), 2012, 46(3)448⁃453. SHEN Guohui, WANG Ningbo, SUN Bingnan, etal. Calculation of wind⁃induced responses and equivalent static wind loads of high⁃rise buildings based on wind tunnel tests [J]. Journal of Zhejiang University (Engineering Science), 2012, 46(3)448⁃453. [ 2] 顾明, 黄鹏. 群体高层建筑风荷载干扰的研究现状及展望 [J].同 济 大 学 学 报 ( 自 然 科 学 版), 2003, 31 (7) 762⁃766. GU Ming, HUANG Peng. Research history and state⁃of⁃art of interference effects of wind loads of a cluster of tall builidngs [J]. Journal of Tongji University (Natural Science), 2003, 31(7)762⁃766. [ 3] KHANDURI A C, STATHOPOULOS T, BEDARDRN C. Generalization of wind⁃induced interference effects for two buildings[J]. Wind & Structures an International Journal, 2000, 3(4)255⁃266. [ 4] 呼和敖德, 孟向阳. 串列双方柱体流体动力载荷研究 [J]. 力学学报, 1992, 24(5) 529⁃534. HU Heaode, MENG Xiangyang. An experimental study of hydrodynamic forces on two square⁃section cylinders in a tandem arrangement [J]. Acta Mechanica Sinica, 1992, 24 (5) 529⁃534. [ 5] XIE Z N, GU M.Mean interference effects among tall buildings [ J ].Engineering Structures, 2004, 26 ( 9 ) 1173⁃1183. [ 6] XIE Z N, GU M. Across⁃wind dynamic response of high⁃rise building under wind action with interference effects from one and two tall buildings [ J].Structural Design of Tall and Special Buildings, 2009, 18(1)37⁃57. [ 7] GU M, XIE Z N. Interference effects of two and three super⁃ tall buildings under wind action[J]. Acta Mechanica Sinica, 2011, 27(5)687⁃696. [ 8] LAM K M, LEUNG M, ZHAO J. Interference effects on wind loading of a row of closely spaced tall buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96 (5)562⁃583. [ 9] KIM W, TAMURA Y, YOSHIDA A. Interference effects on aerodynamic wind forces between two buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2015, 147 186⁃201. [10] 冯永伟,吴小平,杨学林,等. 基于风洞试验的双塔楼超高 层建筑风荷载与风致响应[J]. 建筑结构, 2012,42(8) 65⁃68. FENG Yongwei, WU Xiaoping, YANG Xuelin, et al. Investigation on wind loads and wind⁃induced responses of twin⁃tower super⁃high building based on wind tunnel tests of rigid models[J]. Building Structure, 2012,42(8)65⁃68. [11] SAKAMOTO H, HANIU H. Aerodynamic forces acting on two square prisms placed vertically in a turbulent boundary layer [ J ].JournalofWindEngineering&Industrial Aerodynamics, 1988, 31(1)41⁃66. [12] ZU G B, LAM K M. Across⁃wind excitation mechanism for interference of twin tall buildings in staggered arrangement [ J ].JournalofWindEngineering&Industrial Aerodynamics, 2018, 177167⁃185. [13] XIE J, IRWIN P A. Wind⁃induced response of a twin⁃tower structure[J]. Wind & Structures An International Journal, 2001, 4(6)495⁃504. [14] BUBRYUR K, TSE K T, YUKIO T.POD analysis for aerodynamic characteristics of tall linked buildings [ J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 181126⁃140. [15] SONE J, TSE K T. Dynamic characteristics of wind⁃excited linked twin buildings based on a 3⁃dimensional analytical model[J]. Engineering Structures, 2014, 79169⁃181. [16] 楼文娟, 孙炳楠, 傅国宏, 等. 复杂体形高层建筑表面风 压分布的特征[J]. 建筑结构学报, 1995(6)38⁃44. LOUWenjuan,SUNBingnan,FUGuohong,etal. Distribution of wind load on surface of tall buildings with complex shapes [ J].Journal of Building Structures, 1995 (6)38⁃44. [17] 孙天风,林胜天,顾志福. 作用在并列双矩形柱上的平均 风荷载(英文)[J]. 北京大学学报(自然科学版),1991,27 (3)308⁃316. SUN Tianfeng, LIN Shengtian, GU Zhifu.Mean wind loadings acting on two rectangular cylinders of s
展开阅读全文