资源描述:
2.3LA-ICP-MS在生命科学中应用,LAICPMS测定生物蛋白中的金属元素,Detectionofmetalsinproteinsbymeansofpolyacrylamidegelelectrophoresisandlaserablation-inductivelycoupledplasma-massspectrometryApplicationtoseleniumCyrilleC.ChryDetlefGnther,Electrophoresis,2003,v243305–3313,采用谷胱甘肽过氧化酶红细胞及酵母中提取硒蛋白,凝胶电泳分离,2-DEofselenizedyeastanoproteinpresentbProteincontainingnoSe.c,dTwoSe-containingproteins.,采用1D和2D凝胶电泳分离提取红细胞及酵母中的硒蛋白,采用LA-ICP-MS测定其检出限为0.07ug/g凝胶单点剥蚀和0.15ug/g凝胶。证实了LAICPMS用于蛋白质分析的可行性。,,凝胶电泳-LAICPMS联用测定酵母线粒体蛋白中P、S、Cu、Zn、Fe,In-gelscreeningofphosphorusandcopper,zincandironinproteinsofyeastmitochondriabyLA-ICP-MSandidentificationofphosphorylatedproteinstructuresbyMALDI-FT-ICR-MSafterseparationwithtwo-dimensionalgelelectrophoresisBeckeretc,J.Anal.At.Spectrom.2004,v191236-1243,2Dgelelectrophoreticalseparationofproteinsfromyeastmitochondria;stainingwasperedwithsilver,凝胶分离LAICPMS测定金胶标记抗体,DetectionofspecificproteinsbylaserablationinductivelycoupledplasmamassspectrometryLA-ICP-MSusinggoldclusterlabelledantibodiesSebastianD.Muller,JAAS,2005,20907-911,,,J.SBeckeretalAnalChem2005,77,3208-3216,,三.近期来我们小组的研究工作,,,大气压下介质阻挡放电,DielectricBarrierDischarge,DBD;是有绝缘介质插入放电空间的一种非平衡态气体放电。通常的工作气压为104~106Pa。最早应用于臭氧发生技术上,现已渗透到分析领域,可作为原子化器或离子源用于元素或有机化合物的分析研究。,SchematicoftheDielectricBarrierDischargedevice,实物放电图,CopperInnerElectrode;TinOuterElectrode;PowerSupply;QuartzTube;DischargeGap1.5mm,1.基于DBD抑制LA-ICP-MS分析中元素分馏效应研究,,193nmArFLA-ICP-MS,213nmNdYAGLA-ICP-MS,DBD对瞬时信号轮廓平滑程度的影响,,signalintensities,,signalprecisions,,,DBD对分析信号强度和精密度的影响,,Elementalfractionationindexin193nmand213nmLA-ICP-MSsystems,,,DBD对元素分馏效应的影响,ZHANGLuoYuan,ChemJChinUniv.2008,291947-1952,Localaerosolextractionstrategy,2.激光剥蚀气溶胶原位提取技术及气溶胶化学组成研究,Signalprofileproducedbycontinuouslaserablationforthenormalandtheproposedlocalaerosolextractions.Signalswereacquiredusingarepetitionrateof1Hz.,,,Effectsofthedistancebetweentheablationsiteandtheoutletextractionnozzletip,,Laser,ZhaochuHu,JAnalAtSpectrom,2008,231192–1203,3.硫化物矿物LA-ICP-MS分析的激光剥蚀行为,Figure3.3Microscopicalphotosofchalcopyrite20fold,left;50fold,right,Figure3.2Microscopicalphotosofpyrite10fold,left;50fold,right,硫化物矿物激光剥蚀形貌特征,黄铁矿,黄铜矿,Figure3.5Microscopicalphotosofsphalerite20fold,left;50fold,right,Figure3.4Microscopicalphotosofpyrrhotite20fold,left;50fold,right,闪锌矿,磁黄铁矿,,Figure3.6Microscopicalphotosofmolybdenite20fold,left;50fold,right,193nmArF激光对黄铁矿的剥蚀与对硅酸岩熔融玻璃的剥蚀行为显著不同。,NIST610剥蚀晕照片,辉钼矿,Figure3.7Schematicdiagramofablationhaloation,内层沉积主要以气相硫冷凝包裹的颗粒沉积为主;外层以夹杂少量颗粒的气相硫沉积为主;形成的整体剥蚀晕为剥蚀斑径的8~14倍。,硫化物矿物剥蚀过程中剥蚀晕的形成,Figure5.1Schematicdiagramoftheself-designedquartzsample-meltingboat,自制石英熔样器,Figure5.4SignalintensityprofilesbyLA-ICP-MSanalysisonhomogeneouspartofMS50,合成标准LA-ICP-MS分析信号的稳定性,均匀位置的剥蚀形貌和信号变化,,,Figure5.6SignalintensityprofilesbyLA-ICP-MSanalysisonheterogeneouspartofMS50,不均匀部分的“块金效应”的剥蚀形貌和信号变化,Figure5.7Signalintensityprofilesofline-scanningablationonMS50byLA-ICP-MS,激光线扫描剥蚀的信号变化,Schematicset-upofthelaserablationICP-MSsystemfortheadditionofsmallamountsofnitrogen.MFCdenotesmassflowcontroller.,4.LA-ICP-MS中N2对气溶胶离子化的影响,SignalintensityofLaasafunctionofmakeupgascentralchannelgasflowrateinthepresenceof0,5and10mlmin-1N2flow,respectively.,Sensitivityenhancementfactorsfor65elementsinthepresenceof5and10mlmin-1N2relativetothenormalmodeHeAr,Effectonoxides,Fig.4EffectofmakeupgasflowrateonThO/Thratioatrfpowersofa1350Wandb1150Wforthenormalandnitrogen5mlmin-1modes.Thedashlinesshowdifference0.15-0.20lmin-1ofoptimummakeupgasflowratesforthenormalandnitrogen5mlmin-1modes,whichyieldthemaximumsignalintensityofTh.,RadialandaxialintensitydistributionsforAratanrfpowerof1350Winthenormalmakeupgasflowrates0.90lmin-1and1.0lmin-1andnitrogenmakeupgasflowrate0.90lmin-1;N25mlmin-1modes.,Radialandaxialintensitydistributionsforselectedelementsatanrfpowerof1350Winthenormalmakeupgasflowrates0.90lmin-1and1.0lmin-1andnitrogenmakeupgasflowrate0.90lmin-1;N25mlmin-1modes.,ZhaochuHu,JAnalAtSpectrom,2008,231093-1101,,YongshengLiuetalJAnalAtSpectrom,2007,22582-585.,5.体积自由、低记忆效应激光剥蚀池VOLM的研究,光纤中元素的分布,6.无水矿物和玻璃的LA-ICP-MS无内标元素组成准确分析方法,常规的LA-ICP-MS元素组成分析必须事先已知一个元素的含量。这是现有LA-ICP-MS分析的一个瓶颈。基于所有金属氧化物总量为100wt的原则,本实验室建立了一种利用LA-ICP-MS对无水矿物和玻璃进行无内标元素组成准确分析的方法。,YongshengLiu,etal,ChemGeol,2008,257,34-43.,,以往方法,本研究方法,微耳石,星耳石,星耳石(背面),7.鱼耳石元素分布及年龄测定,,,2mm,,32um,鱼耳石核心到边缘元素分布,鱼耳石核心到边缘元素分布,Agedeterminationbasedontheelementspatialdistributioninotoliths,,,,,,,,Fiveyearsold,,,,,,,Fiveyearsold,,,a,,,,,,,Fiveyearsold,XinnaChaitedFisheriesResearch,2010,,8.LA-ICP-MS蛋白质芯片分析,AFPalpha-Fetoprotein;CEAcarcinoembryonicantigenhumanIgG,,,,DualLabelingArrays,,TernaryLabelingArrays,Thisfigureshowssignalsofthreeelement-taggedantibodiesobtainedbyLA-ICPMSoneachspot.ThedualandternaryresultsclearlyshowthattheLA-ICPMScanbeusedtodetectmultipleantibodieswithelementaltagsonamicroarray.,Resolution,,,,,Thecratersvaryfrom40to4um.Fora30umablationcrater,thespacedistancebetweencentersoftwoadjacentcratersisabout40um,correspondingtoadensityofsamplespotsof62500spotspersquarecentimeter.Thedensityofsamplespotsis25timesthancurrentbiochips.Theminimalavailabilityablationcrateris4umforacurrentlynewtypeoflaserablationsystem.,,40um,4um,Highthroughoutanalysis,62500spots/cm2,EffectsofLaserPulseonEfficiencyofDesorption,,Forhigh-throughputanalysis,itisessentialthatallsamplesarecompletelyablatedandtransportedrapidlytotheplasmatoobtainasharplytransientsignal.Thisfigureshowedthetypicaltransientsignalduringthelaserablation.29Sisignalwasusedasatracertoindicatethecompleteremovalofsamplesfromtheglasssurface.ThesignalintensityofEushowednodetectablechangebyusingdifferentlaserpulses,whilethesignalintensityofSiobviouslyincreased.Theresultsindicatedthatanalyteonthesurfaceofglasssubstratewascompletelyablatedwithonelaserpulse.,Analyticalperance,,Forcalibratingpurpose,amixedsolutionof0,1.0,10,100,and500ngmL-1foreachproteinwasexamined.Whentheimmunoreactionswerefinished,themicroarraywasdetectedbyLA-ICPMS.Thecorrelationcoefficientsbetweensignalintensitiesandtheconcentrationofanalyteswere0.992,0.995,and0.996intheconcentrationrangebetween0and500ngmL-1forAFP,CEA,andhumanIgG,respectively.ThelimitsofdetectionLODwere0.20,0.14,and0.012ngmL-13forthethreeproteins,respectively.,ShenghongHuetalAnalChem2007,79,923-929,
展开阅读全文