采煤机行走部粘滑摩擦动力学特性研究.pdf

返回 相似 举报
采煤机行走部粘滑摩擦动力学特性研究.pdf_第1页
第1页 / 共151页
采煤机行走部粘滑摩擦动力学特性研究.pdf_第2页
第2页 / 共151页
采煤机行走部粘滑摩擦动力学特性研究.pdf_第3页
第3页 / 共151页
采煤机行走部粘滑摩擦动力学特性研究.pdf_第4页
第4页 / 共151页
采煤机行走部粘滑摩擦动力学特性研究.pdf_第5页
第5页 / 共151页
点击查看更多>>
资源描述:
、 博士学位论文博士学位论文 采煤机行走部粘滑摩擦动力学特性研究 Study on the Dynamic Characteristics of Stick-slip Friction in the Walking Unit of Shearer 作者姓名白杨溪 导师姓名陈洪月 教授 学科专业机械设计及理论 研究方向机械系统建模与仿真 完成日期2020 年 6 月 28 日 辽宁工程技术大学 Liaoning Technical University 万方数据 论 采 煤 机 行 走 部 粘 滑 摩 擦 动 力 学 特 性 研 究 白白 杨杨 溪溪 辽辽 宁宁 工工 程程 技技 术术 大大 学学 万方数据 万方数据 中图分类号TD421学校代码10147 UDC621密级公 开 辽宁工程技术大学 博士学位论文博士学位论文 采煤机行走部粘滑摩擦动力学特性研究 Study on the Dynamic Characteristics of Stick-slip Friction in the Walking Unit of Shearer 作者姓名白杨溪学号471710005 导师姓名陈洪月 (教授)副导师姓名 申请学位工学博士培养单位机械工程学院 学科专业机械设计及理论研究方向机械系统建模与仿真 二○二〇年六月 万方数据 致致 谢谢 白驹过隙,日光荏苒,博士研究生的学习生活即将画上一个句号,我要感谢在 本论文的撰写期间老师、同学、家人的关心与帮助。 首先要感谢我的导师陈洪月教授,从最初的选题,到资料收集,到实验安排、 到写作、修改及最后论文定稿,严格把关,循循善诱,每一步都离不开导师的悉心 指导。陈洪月教授严谨的科研精神,渊博的知识储备,兢兢业业的工作态度,平易 近人的人格魅力对我的学习和生活产生了深远的影响。不仅使我在学习上树立了明 确的学术目标、掌握了基本的学习方法,还使我明白了许多为人处世的道理在此向 陈洪月教授表示诚挚的敬意和由衷的感谢 同时,我还要感谢朴明波副教授、王鑫讲师、杨辛未讲师、师弟杨威博士、吕 掌权博士、胡雪兵硕士、魏玉峰硕士、陈洪岩硕士、赵志群硕士等,以及整个实验 室的师弟、师妹们在我论文完成过程中的鼓励与帮助,感谢你们,也愿你们在学业 与事业更上一层楼。 感谢我的家人一直对我学业始终如一的支持,对我生活的关心与照顾。感谢所 有在我读博期间曾关心和支持过我的朋友们。 衷心感谢在百忙中评阅本文的专家、教授;衷心感谢所引用参考文献的作者。 万方数据 I 摘摘要要 采煤机属于低速、重载设备,其支撑滑靴与导轨间的粘滑摩擦与碰撞冲击行为是引起 滑靴和销排发生磨损、断裂失效的根本原因。受滑靴与导轨间间隙内煤粉颗粒的影响,滑 靴与导轨的摩擦和接触过程存在着时变性和复杂性;受滑靴与导轨间配合几何形状的影 响,采煤机滑靴与导轨间存在着多面接触碰撞和摩擦行为,所以采煤机与刮板输送机之间 是一个含间隙碰撞的三体、多面接触粘滑振动行为,本文采用理论建模、数值求解与实验 验证相结合的方法揭示采煤机与刮板机间的力学作用机理,主要内容如下 为了揭示采煤机滑靴粘滑摩擦机理,以采煤机的导向滑靴、平滑靴为研究对象,基于 现代接触理论讨论了在各种工况下导向滑靴与销排间以及平滑靴与铲煤板间的接触形式, 分别构建接触面为四边形、多边形以及线面接触时滑靴接触力的计算模型;基于粘滑摩擦 理论、三体摩擦理论构建了导向滑靴与销排间及平滑靴与铲煤板间的摩擦力学模型、以及 滑靴-导轨-煤粉间三体摩擦力学模型,研究了接触面表面粗糙度、煤粉粒度对滑靴摩擦力 的影响,结果表明三体摩擦中接触面越粗糙,填隙作用下煤粉对滑靴的润滑作用越明显。 为了构建复杂工况下采煤机行走部振动模型,以采煤机行走部的驱动轮、导向滑靴、 平滑靴等关键部件为研究对象,考虑轴承支撑作用构建驱动轮啮合振动模型,基于 Hertz 接触理论推导啮合刚度计算公式,考虑采煤机扭摆情况的导向滑靴与销排接触碰撞振动模 型以及平滑靴与铲煤板接触碰撞振动模型,基于第二章构建滑靴接触模型推导出含间隙情 况下滑靴接触刚度计算公式。 为了深入研究工况因素对采煤机滑靴振动特性的影响,结合采煤机滑靴粘滑摩擦力学 模型以及导向滑靴、平滑靴、驱动轮的动力学模型,构建正常截割、俯仰、侧倾、斜切四 种工况下的采煤机行走部动力学模型,分别研究了采煤机俯仰角、侧倾角、摆角对采煤机 滑靴振动特性的影响,结果表明随着俯仰角的增大,导向滑靴和平滑靴在 y 方向上变化 比较明显,前导向滑靴和前平滑靴的振动加速度增幅最大,说明俯仰角越大前导向滑靴和 前平滑靴振动越剧烈;随着侧倾角的增大,导向滑靴和平滑靴在 y 方向上变化比较明显, 前导向滑靴和后导向滑靴的振动加速度呈负相关,说明侧倾角越大前导向滑靴和前平滑靴 振动幅度越小,平滑靴 y 方向则相反,侧倾角越大振动越剧烈,而侧倾角变化对 x、z 方向 的振动影响不明显,仅有微幅波动;随着摆角的增大,导向滑靴和平滑靴在 y 方向上变化 最为明显,前导向滑靴和前平滑靴在 x 方向振动加速度增幅次之,说明摆角越大前导向滑 靴和前平滑靴 x、y 方向振动越剧烈,而后平滑靴 x 方向和后导向滑靴 y 方向则相反,随着 摆角增大振动减弱;但摆角变化对 z 方向的振动加速度影响并不明显,仅有微幅波动。 以现流通的 MG500/1130 型采煤机为参照,依据相似原理对 MG500/1130 型采煤机进 万方数据 II 行 110 缩放,加工出实验样机并行走部进行测试实验,选取工况、激励、摩擦、速度等四 个因素作为测试实验的影响因素,采用正交实验设计方法制定实验方案,并用安装在导向 滑靴和平滑靴三向加速度传感器获取振动信号,通过分析实验结果研究工况、激励、摩擦、 速度四类因素对采煤机滑靴振动的影响。 本文的研究成果为提高采煤机动态特性及滑靴结构优化设计提供理论支撑,也可为含 粉尘和间隙的机械系统摩擦与碰撞行为研究提供依据。 该论文有图 79 幅,表 10 个,参考文献 142 篇。 关键词关键词三体摩擦;粘滑摩擦;采煤机滑靴;振动特性 万方数据 III Abstract The shearer is an equipment with low speed and heavy load. The stick-slip friction and collision impact between the sliding boots and the guiding rail are the root causes of wear and fracture failure of the sliding boot and the pin row. Due to the influence of coal powder particles in the gap between the sliding boots and the guiding rail, the time variation and complexity exist in the process of the friction and contact between the sliding boots and guiding rail. Due to the influence of geometric matching shape between the sliding boots and the guiding rail, there are multi-surface contact collision and friction behaviors between the sliding boots and the guiding rail, thus, between the shearer and the scraper, the three-body, multi-surface contact stick-slip vibration behavior with gap collision exists. The combination of theoretical modeling, numerical and experimental verification is employed to reveal the mechanical mechanism of action between the shearer and the scraper in the paper. The main contents are as follows To reveal the stick-slip friction mechanism of the shearer sliding boots, i.e., the guiding boots and the flat boots, taking a guiding boot and a flat boot as the research objects, the contact s between the guiding boot and the pin row and between the flat boot and the coal shovel are discussed based on the modern contact theory, the calculation models of boot contact forces for quadrilateral, polygonal and line-surface contact are established respectively. Based on the stick-slip friction theory and the three-body friction theory, the friction mechanical models between the guiding boot and the pin row and between the flat boot and the coal shovel are set up, also the three-body friction mechanical model between the sliding boots, the guiding rail and the coal powders is constructed. The effects of surface roughness and particle size of coal powders on the friction force of sliding boots are studied. The results show that the rougher the contact surface is, the more obvious lubrication effect of the coal powder on the sliding boots under gap filling is. To construct the vibration model of shearer walking unit under complicated working conditions, the key components such as the drive wheel, the guiding boot and the flat boot of shearer walking unit are studied. The meshing vibration model of the drive wheel is constructed considering the bearing supporting action, and the meshing stiffness equation is derived based on Hertz contact theory. Taking the contact collision vibration model of the guiding boot and the pin row and that of the flat boot and the coal shovel under the shearer twist, and based on the sliding boot contact model constructed in Chapter 2, the contact stiffness calculation equation of the 万方数据 IV sliding boot with clearance is derived. To deeply study the influence of working condition on the vibration characteristics of the shearer sliding boot, by combining the stick-slip friction model of the shearer sliding boot, the dynamics models of guiding boot, of flat boot and of drive wheel, the dynamics models of shearer walking unit under normal cutting, pitching, rolling and chamfering conditions are constructed. The influences of shearer pitch angel, side inclination angle and the swing angle to the vibration characteristics of shearer sliding boot are studied. The results show that with the increase of the pitch angle, the vibration characteristics of the guiding boots and the flat boots change significantly in the y direction, the vibration acceleration of the forward guiding boot and the forward flat boot increase the most, which indicates the larger the pitch angle, the more intense the vibration of the forward guiding boot and the forward flat boot. With the increase of the roll angle, the vibration characteristics of the sliding boot and the flat boot change significantly in the y direction, the vibration accelerations of the forward sliding boot and the rear sliding boot are negatively correlated, which indicates the larger the roll angle, the smaller the vibration ranges of the forward sliding boot and the forward flat boot, the vibration of the flat boot in the y direction is the opposite, the larger the roll angle, the more intense the vibration, and influences of the roll angle variation to the vibrations in the x and z directions are small, and only with slight fluctuations. With the increase of the swing angle, the vibrations of the guiding boot and the flat boot change most significantly in the y direction, followed by the vibration accelerations of the forward guiding boot and the forward flat boot increase in the x direction. It shows that the larger the swing angle, the more intense the vibration of the forward guiding boot and the forward flat boot in the x and y direction, while the vibration of the rear flat boot in the x direction and that of the rear guiding boot in the y direction are on the opposite, and with the swing angle increases, the vibration decreases; but the change of the swing angle has no obvious effect on the vibration in the z-direction, with only slight fluctuation. With reference to shearer MG500/1130, the shearer MG500/1130 is scaled by 1 10 according to the principle of similarity, the experimental prototype is processed and the walking unit is tested. Taking working condition, excitation, friction and speed as the influence factors to the testing experiment, the experiment scheme is determined by employing the orthogonal experimental design , the vibration signals are obtained by the three-dimensional acceleration sensors installed on the guiding boot and the flat boot, and the influence of working condition, excitation, friction and speed to the vibration of shearer sliding boot are studied by analyzing the experimental results. 万方数据 V The research results in this paper provide theoretical support for improving the dynamic characteristics of shearer and optimal design of sliding structure, also provide basis for the study of friction and collision behavior of mechanical system with dust and clearance. KeywordsThree-bodyfriction;Stickslipfriction;Shearerslidingboot;Vibration characteristics 万方数据 VI 目目录录 摘摘要要..............................................................................................................................................I 目目录录...........................................................................................................................................VI 图清单图清单............................................................................................................................................ X 表清单表清单........................................................................................................................................XVI 变量注释表变量注释表.............................................................................................................................. XVII 1 绪论绪论............................................................................................................................................. 1 1.1 课题来源.................................................................................................................................. 1 1.2 课题背景及意义...................................................................................................................... 1 1.3 国内外研究现状...................................................................................................................... 2 1.4 主要研究内容.......................................................................................................................... 8 2 滑靴与导轨粘滑摩擦滑靴与导轨粘滑摩擦模型构建模型构建...............................................................................................10 2.1 滑靴与导轨间直接摩擦力学模型........................................................................................ 10 2.2 滑靴、煤粉与导轨间三体摩擦力学模型............................................................................ 29 2.3 表面粗糙度对滑靴与导轨间摩擦力的影响........................................................................ 36 2.4 本章小结................................................................................................................................ 38 3 采煤机行走部振动模型采煤机行走部振动模型...........................................................................................................39 3.1 驱动轮啮合振动模型构建.................................................................................................... 39 3.2 导向滑靴与销排接触碰撞振动模型构建............................................................................ 43 3.3 平滑靴与铲煤板接触碰撞振动模型构建............................................................................ 53 3.4 本章小结................................................................................................................................ 58 4 采煤机行走部动力学特性研究采煤机行走部动力学特性研究...............................................................................................59 4.1 正常工况下采煤机行走部动力学特性................................................................................ 59 4.2 俯仰工况下采煤机行走部动力学特性................................................................................ 67 4.3 侧倾工况下采煤机行走部动力学特性................................................................................ 73 4.4 斜切工况下采煤机行走部动力学特性................................................................................ 79 4.5 本章小结................................................................................................................................ 86 5 实验室相似模拟实验研究实验室相似模拟实验研究.......................................................................................................87 万方数据 VII 5.1 相似实验模型构建................................................................................................................ 87 5.2 正交实验方案设计................................................................................................................ 89 5.3 实验设备及测试过程............................................................................................................ 92 5.4 实验结果分析........................................................................................................................ 96 5.5 理论与实验对比分析.......................................................................................................... 103 5.5 本章小结...............................................................................................................................110 6 结论结论与展望与展望..............................................................................................................................112 6.1 结论.......................................................................................................................................112 6.2 创新点...................................................................................................................................112 6.3 展望.......................................................................................................................................113 参考文献参考文献......................................................................................................................................114 查新结论查新结论..................................................................................................................................... 122 作者简历作者简历..................................................................................................................................... 123 学位论文原创性声明学位论文原创性声明.................................................................................................................125 学位论文数据集学位论文数据集......................................................................................................................... 126 万方数据 VIII Contents Abstract........................................................................................................................................III Contents.....................................................................................................................................Ⅷ List of Figures................................................................................................................................X List of Tables.............................................................................................................................XVI List of Variables.......................................................................................................................X
展开阅读全文

资源标签

最新标签

长按识别或保存二维码,关注学链未来公众号

copyright@ 2019-2020“矿业文库”网

矿业文库合伙人QQ群 30735420