资源描述:
分类号 U469.693 单位代码 10335 密 级 无 学 号 21827057 硕士学位论文 中文论文题目中文论文题目 某型特种车辆油气弹簧减振阀某型特种车辆油气弹簧减振阀关键部件关键部件 疲劳可靠性研究疲劳可靠性研究 英文论文题目英文论文题目Research on the fatigue reliability of key components of hydro-pneumatic spring damper for a special vehicle 申请人姓名 闻华殿 指导教师 刘震涛 专业名称 动力机械及工程 研究方向 车辆及发动机零部件可靠性 所在学院 能源工程学院 论文提交日期论文提交日期 2021 年年 6 月月 万方数据 万方数据 万方数据 浙江大学硕士学位论文 致谢 I 致谢致谢 从研一步入求是园开始算起,至今已经三个年头,时光飞逝,转眼研究生生 涯即将结束。回首这三年,我成长了许多也收获了许多,感谢陪伴我度过这段难 忘而有意义时光的老师和同学们, 正因为有你们对我的关心和帮助我的求学之路 才能更加顺利。 首先要感谢我的导师刘震涛教授,本文便是在您的指导下完成的,从最初项 目课题的确立、工作计划的安排、仿真工作的进行直至毕业论文的撰写和修改, 您都进行了极具耐心的指导; 无论是在科研学习中还是在日常生活上, 每当我遇 到了迷惑不解之处或是不顺心不如意之事,您都能给我帮助,为我拨开迷雾、指 引方向;除此之外,您在我研三的求职阶段也给我提供了很多就业机会的引荐, 给予了我极大的支持和鼓励。 其次感谢课题组内的张宇老师、傅佳宏老师、刘金龙老师、李贤卿老师、李 建锋主任、李海玲老师和李玉江老师,虽然你们背负着各类横纵向项目、教学、 财务报销等一系列繁杂的任务,但是还是抽时间给我提供了科研课题上的指导。 同时要感谢黄钰期老师, 在我找不到方向的时候一起探索摇摆传热课题的研究价 值。 感谢办公室一起工作生活的小伙伴张艳艳、 张威、 孙美瑶、 李科阳、 颜睿东、 葛广彬、刘凯华、刁子宇、原野、阳若淼以及三只小猫大胖、大胆、胆小鬼;感 谢已经毕业的师兄陈睿、钟剑锋、李征涛、陈建宇、潘立挺、强佳俊在我初入校 园时给予我生活和科研上的指导;感谢其他课题组的钱柯宇、凌珑、江旭东、张 腾、牛昊一、张鹏飞、吕成磊、常晋伟、沈俊昊陪我度过这几年难忘的时光;感 谢王扬、李松翰、徐宸帆、张天行、傅珂杰、王佳楠、李倩、何麒麟、徐冰洁、 潘道蒙、谢廷、姒烨飞、单煜、沈磊雷、胡珈源、周羽冀等曾经的同学还和我保 持联系甚至时常见面,让我科研之余的时光足够充实欢乐。 感谢我的室友赵一飞、谢琮、张遵恒,我们一起熟悉校园、一起探索美食、 一起准备秋招、一起为论文熬夜、一起为喜事庆祝,我相信毕业冲不散我们的友 谊,以后有机会定能再次会面。同时感谢 31 舍的叔叔阿姨,感谢你们这几年的 照顾。 感谢我最亲爱的家人们、亲戚朋友们和我的女朋友张雨新,有你们的存在才 万方数据 致谢 浙江大学硕士学位论文 II 让我无惧求学路上的挫折一步步坚定地迈向前方, 因为你们是我最温暖的港湾和 最坚实的后盾 最后,感谢求职过程中所有的面试官,无论你们给了我通过还是不通过都将 是我步入社会前的第一笔财富。 同时感谢所有我听过看过的网课的老师们和一起 讨论知识点的伙伴们,是你们让我不断进步并找到了满意的工作。 祝愿所有我所提及的和来不及感谢的人能够身体健康、万事如意,我将带着 你们的支持和鼓励续写人生新的篇章 闻华殿 2021 年 6 月于浙江大学玉泉校区 万方数据 浙江大学硕士学位论文 摘要 III 摘要摘要 油气弹簧因其渐增性的非线性特性使其在特种车辆上得到广泛的应用, 但极 限工况下路面的高频冲击载荷使其减振阀关键部件出现各类故障导致零件失效, 因此对其减振阀结构可靠性的研究显得尤为重要。 本文对新一代特种车辆所配置 油气弹簧减振阀的特性进行分析和探讨, 基于此对其结构强度和疲劳寿命进行评 估并提出改进方案,为新一代特种车辆行动系统可靠性的提升提供有力支撑。 以某型特种车辆油气弹簧的减振阀为研究对象, 根据其具体结构和工作原理 建立了其数学模型和有限元模型,基于 ANSYS Workbench 平台完成了不同入口 流量下的油液冲击仿真,获取其两侧的压差数据,将其与该减振阀实车样件在同 工况下的实验结果进行对比,辅以理论计算结果验证了仿真模型的准确性,并通 过全工况下仿真结果获取了减振阀开阀的压差为 53.8MPa 左右,对应的活塞运 动速度为 1.62m/s 左右。 基于流固耦合仿真技术,选取高、中、低频率各两个工况共计 6 种简谐振动 加载工况对减振阀-油液模型进行了流场分析,得到不同工况下油液流速和压强 的分布状态和分布规律,并对流固耦合面的压力场进行了分析,为减振阀关键部 件的应力和疲劳分析提供数据支撑。 利用 Modal 模块对减振阀进行了模态分析和前十五阶振型的提取,排除了 工作状态下共振的可能性,并以减振阀关键易损部件阀芯和阀座为研究对象,基 于流固耦合仿真的结果对其进行了常规和高速工况下的应力分析和静强度的校 核, 得到其易损区域的分布。 基于应力分析结果, 采用应力-寿命法对阀座和阀芯 进行了典型工况下的疲劳分析并与实车的结构件失效照片进行对比验证, 研究发 现阀座颈部的连接处和阀芯杆部为疲劳失效位置。 通过改变常通孔孔径、背压弹簧刚度、活塞加载速度和油液粘度探讨了设计 参数和运行参数对减振阀关键部件疲劳寿命的影响规律, 利用正交试验设计方法 对各个因素进行了敏感性分析,并基于研究结果提出改进建议,具体方案为背压 弹簧刚度调整至 10kN/m、常通孔孔径提升为 5mm、油液选取 HM46 号液压油、 工作缸缸径适当增大至 90mm,改进后阀芯和阀座易损区域的最大应力下降 51.8,疲劳寿命提升 112.5,有效提升了减振阀关键部件的疲劳可靠性。 关键词关键词油气弹簧,减振阀,流固耦合,疲劳分析,仿真 万方数据 浙江大学硕士学位论文 Abstract IV Abstract Hydro-pneumatic spring is widely used in special vehicles because of its increasing nonlinear characteristics. However, the high-frequency impact load of the road makes the key components of its damping valve have all kinds of failures, leading to the failure of parts. Therefore, the research on the reliability of its damping structure is particularly important. This paper analyzed and discussed the characteristics of the hydro-pneumatic spring damper for the new generation of special vehicles. Based on this, the structural strength and fatigue life of the damper were uated, and the improvement scheme was proposed, which provided strong support for the improvement of the reliability of the new generation of special vehicles. Taking the damping valve of hydro-pneumatic spring of a special vehicle as the research object, the mathematical model and finite element model were established according to its specific structure and working principle The simulation of oil impact under different inlet flow rates was completed on workbench plat, and the pressure difference data on both sides was obtained. The simulation results were compared with the experimental results of the real vehicle sample under the same working conditions, and the accuracy of the simulation model was verified by the theoretical calculation results. Through the simulation results under the whole working conditions, the opening pressure difference of the damping valve was about 53.8MPa, and the corresponding piston movement speed was obtained 1.62m/s. Based on the fluid structure coupling simulation technology, 6 kinds of simple harmonic vibration loading conditions were selected to analyze the flow field of the damping valve-oil model. The distribution of oil flow velocity and pressure under different working conditions were obtained, and the pressure field of the fluid structure coupling surface was analyzed, which provided data support for the stress and fatigue analysis of the key components of the damping valve. Modal analysis module was used to carry out modal analysis and extraction of the first fifteen modes of vibration of the damping valve, which eliminated the possibility of resonance under working conditions. Taking the valve core and valve seat as the research object, based on the results of fluid structure coupling simulation, the stress analysis and static strength check under normal and high-speed conditions were carried out, and the distribution of vulnerable areas was obtained. Based on the results of stress analysis, the fatigue analysis of the valve seat and the valve core under typical working 万方数据 Abstract 浙江大学硕士学位论文 V conditions was carried out by using the stress life , and compared with the failure photos of the structural parts of the real vehicle, it was found that the joint of the valve seat neck and the valve core rod were the fatigue failure positions. The influence of design parameters and operating parameters on the fatigue life of key components of the vibration damping valve was discussed by changing the aperture of the normal through hole, the stiffness of the back pressure spring, the piston loading speed and the oil viscosity. The orthogonal test design was used to sensitively each factor. Based on the research results, the improvement suggestions were put forward. The specific plan was to adjust the stiffness of the back pressure spring to 10kN/m, increase the diameter of the normal through hole to 5mm, select the HM46 hydraulic oil, and increase the working cylinder diameter to 90mm appropriately. The maximum stress of the vulnerable area of the rear valve core and valve seat was reduced by 51.8, and the fatigue life was increased by 112.5, which effectively improved the fatigue reliability of the damping valve. Keywords hydro-pneumatic spring, damper valve, fluid structure coupling, fatigue analysis, simulation 万方数据 浙江大学硕士学位论文 目录 VI 目录目录 致谢致谢 ............................................................................................................................... I 摘要摘要 ............................................................................................................................ III Abstract ...................................................................................................................... IV 目录目录 ............................................................................................................................ VI 图目录图目录 ........................................................................................................................ IX 表目录表目录 ....................................................................................................................... XII 1 绪论绪论 ........................................................................................................................ 1 1.1 课题研究的背景与意义.................................................................................. 1 1.2 国内外研究现状.............................................................................................. 3 1.2.1 油气弹簧研究现状................................................................................... 3 1.2.2 流固耦合应用于减振阀研究的现状....................................................... 5 1.2.3 疲劳特性分析方法研究现状................................................................... 7 1.3 本文主要研究内容........................................................................................ 10 2 油气弹簧减振阀结构建模及验证油气弹簧减振阀结构建模及验证 ...................................................................... 12 2.1 油气弹簧工作原理........................................................................................ 12 2.2 减振阀结构数学建模.................................................................................... 14 2.3 减振阀结构实体建模.................................................................................... 16 2.3.1 减振阀结构有限元模型建立................................................................. 16 2.3.2 网格无关性分析..................................................................................... 19 2.4 低速工况流量冲击仿真及试验验证............................................................ 21 2.4.1 仿真分析................................................................................................. 21 2.4.2 试验验证................................................................................................. 22 2.5 全工况仿真结果分析.................................................................................... 24 2.6 本章小结........................................................................................................ 26 3 基于流固耦合的减振阀流场特性分析基于流固耦合的减振阀流场特性分析 .............................................................. 27 3.1 流固耦合求解基本原理................................................................................ 27 3.1.1 流体流动控制方程................................................................................. 27 3.1.2 流固耦合边界数据传递......................................................................... 28 万方数据 目录 浙江大学硕士学位论文 VII 3.1.3 油气弹簧减振阀结构流固耦合求解思路............................................. 29 3.2 流固耦合求解设置........................................................................................ 30 3.2.1 模型参数设置......................................................................................... 30 3.2.2 流固耦合面设置..................................................................................... 31 3.2.3 边界条件设置......................................................................................... 33 3.3 减振阀流场特性分析.................................................................................... 33 3.3.1 流场分析................................................................................................. 33 3.3.2 耦合面压力场分析................................................................................. 38 3.4 本章小结........................................................................................................ 42 4 减振阀关键部件结构强度分析减振阀关键部件结构强度分析 .......................................................................... 44 4.1 减振阀模态分析............................................................................................ 44 4.1.1 模态分析理论......................................................................................... 44 4.1.2 模态分析及结果提取............................................................................. 45 4.2 关键部件应力分析........................................................................................ 48 4.2.1 材料参数及前处理................................................................................. 48 4.2.2 减振阀阀座应力分析............................................................................. 49 4.2.3 减振阀阀芯应力分析............................................................................. 51 4.3 关键部件疲劳分析........................................................................................ 52 4.3.1 疲劳分析方法及前处理......................................................................... 52 4.3.2 疲劳分析结果......................................................................................... 54 4.4 本章小结........................................................................................................ 56 5 减振阀关键部件疲劳寿命影响因素研究减振阀关键部件疲劳寿命影响因素研究 .......................................................... 58 5.1 设计参数对疲劳寿命的影响........................................................................ 58 5.1.1 常通孔孔径对疲劳寿命的影响............................................................. 58 5.1.2 背压弹簧刚度对疲劳寿命的影响......................................................... 60 5.2 运行参数对疲劳寿命的影响........................................................................ 62 5.2.1 峰值加载速度对疲劳寿命的影响......................................................... 62 5.2.2 油液粘度对疲劳寿命的影响................................................................. 64 5.3 基于正交试验法的疲劳寿命影响因素规律研究........................................ 65 万方数据 浙江大学硕士学位论文 目录 VIII 5.3.1 疲劳寿命非线性影响因素正交设计表................................................. 65 5.3.2 正交试验计算结果分析......................................................................... 67 5.4 改进措施分析................................................................................................ 70 5.5 本章小结........................................................................................................ 72 6 总结与展望总结与展望 .......................................................................................................... 74 6.1 工作总结........................................................................................................ 74 6.2 未来展望........................................................................................................ 75 参考文献参考文献 ..................................................................................................................... 77 作者简介作者简介 ..................................................................................................................... 84 万方数据 浙江大学硕士学位论文 图目录 IX 图目录图目录 图 1.1 WABCO 公司设计的 Hydrair Ⅱ型油气弹簧结构图 ........................................ 1 图 1.2 HYDRAGAS 油气弹簧实物图 ......................................................................... 2 图 1.3 单气室油气弹簧................................................................................................ 2 图 1.4 双气室和两级压力式油气弹簧........................................................................ 3 图 1.5 全文研究路线.................................................................................................. 11 图 2.1 油气弹簧结构及减振阀布置图...................................................................... 12 图 2.2 减振阀结构图.................................................................................................. 13 图 2.3 压缩行程油液流向图...................................................................................... 13 图 2.4 回复行程油液流向图...................................................................................... 14 图 2.5 二自由度悬挂线性模型.................................................................................. 14 图 2.6 简化后的减振阀-油液物理模型 ..................................................................... 18 图 2.7 减振阀-油液网格模型 .................................................................................... 18 图 2.8 不同网格密度下纵截面的压强分布图.......................................................... 20 图
展开阅读全文