资源描述:
博士学位论文 燃煤电厂中速磨机内循环负荷的脉动 流化床分选特性研究 Research on Separation Characteristics of Circulating Loads in Medium Speed Mill of Coal-Fired Power Plant Using Pulsating Fluidized Bed 作 者杨 勇 导 师何亚群 教授 中国矿业大学 二〇二〇年十二月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD94 学校代码 10290 UDC 622 密 级 公开 中国矿业大学 博士学位论文 燃煤电厂中速磨机内循环负荷的脉动流化床 分选特性研究 Research on Separation Characteristics of Circulating Loads in Medium Speed Mill of Coal- Fired Power Plant Using Pulsating Fluidized Bed 作 者 杨勇 导 师 何亚群 申请学位 工学博士学位 培养单位 化工学院 学科专业 矿物加工工程 研究方向矿物加工理论、工艺与设备 答辩委员会主席 闵凡飞 评 阅 人 二○二○年十二月 万方数据 致谢致谢 2010-2020 年,是我在矿大从本科到博士的十余年。年少匆匆的本科四年还 算顺利,但直博六年的艰辛实属不易。在这条漫漫的求学路上,衷心感谢我的导 师何亚群教授六年来的悉心指导与关怀。何老师认真严谨的治学态度、精深广博 的专业知识、一丝不苟的科研态度让我受益匪浅。何老师待人和蔼亲切,在生活 中给予了我无微不至的照顾,特别是在疫情期间,多次通过网络及电话问候我的 身心健康以及毕业论文的进展情况。 在何老师的支持下,我还有幸获得了两年国外联合培养的学习机会。感谢加 拿大英属哥伦比亚大学的两位导师毕晓涛教授和 John R. Grace 教授,让我从身 处异国的不适感迅速调整到正常的学习科研轨道。 每周一次的研究汇报总是能督 促并引领我在课题研究上顺利前行。感谢毕老师课题组的王子良博士、贾德宁博 士、王瑞雪博士、程龙博士、张思多师姐、聂煜昊博士、杨璞硕士;感谢胡桂林 教授、吴志强教授、李军研究员、郭常青研究员,感谢你们的帮助与陪伴,让我 愉快地度过了两年异国求学生涯。 感谢王海锋教授在课题选题、 试验设计、 论文写作等方面给予的指导与启发。 王老师勤奋求实的科研作风是我今后工作的榜样。 毕业实验的开展更离不开叶璀 玲老师、郝娟老师的帮助,感谢你们在基础试验平台上提供的支持。感谢李海生 教授、宋树磊教授、陶有俊教授、彭耀丽教授、夏文成教授在试验过程中给与的 帮助。 感谢于冰老师、 刘怀宇老师、 王超老师在现代仪器分析测试中给与的支持。 感谢同课题组的王帅副研究员、谢卫宁副教授、张光文讲师、魏华讲师、吴 珊博士、 王婕博士、 张涛博士、 路遥博士、 凌向阳博士在研究生涯中给于的鼓励。 感谢冯驿博士、张峰彬博士、逯启昌硕士、徐勇强硕士、张旭硕士、韦能硕士给 予的无私帮助。实验前期无数次试验与探索,以及中后期一个个繁琐且辛苦的实 验,都是在你们的配合下完成的。感谢温保峰博士、付元鹏博士、白雪杰博士、 李金龙博士、郭轩辰博士、杨丹硕士、李荣念硕士、师吉兰硕士、于昭仪硕士, 感谢大家团结一致,共同努力,使 308 课题组朝气蓬勃。感谢已经毕业了的张亚 恒硕士、葛林翰博士、朱向楠博士、李红博士、戈振州硕士、王昱杰硕士、杨兴 硕士、张雨硕士、余嘉栋硕士、彭真硕士、杨金山硕士、屈莉莉硕士、刘江山硕 士在读博期间的陪伴。 感谢我的家人,我勤劳辛苦的爸爸妈妈和年迈的奶奶。漫长的求学之路不仅 让我无法给予你们日常的陪伴和照顾,也暂时无法分担家里的经济开支。在此, 感谢你们的鼓励与理解,虽然我知道你们都不会看到这篇论文。最后,感谢我的 女友,亲爱的 Maggie,恋爱 7 年异地 5 年,其中的快乐悲伤思念与不易,日月 星辰与你我共知。 万方数据 I 摘摘 要要 煤炭在全国能源消费结构中比重最高,这与我国“多煤、贫油、少气”的资源 禀赋息息相关。煤炭资源的丰富性、可靠性、价格低廉性及可洁净性,决定了我 国一次能源消费结构以煤炭为主的格局短时间内不会改变。 电力行业煤炭需求增 长是我国煤炭消费保持高位的主要原因。由于电厂用煤多为灰分偏高的劣质煤, 其矸石含量高、排灰量大、发热量低且可磨性差。煤炭需经多次研磨才能达到合 格煤粉的粒度要求,导致磨机内循环负荷的质量要远大于磨煤机出力。循环负荷 中富集了大量硬度高、密度大、可磨性差的煤系伴生矿物质,导致磨机设备磨损 和能耗增大。同时,这些矿物质也是燃煤电厂产生 SO2、NOX、烟尘和重金属等 环境污染物的根本来源。 若能通过煤炭分选加工的方式脱除循环负荷中不断累积 的矿物质组分,就能实现煤炭在研磨过程中及燃烧前脱硫降灰提质,对于降低磨 机内循环倍率及磨损、 提高磨煤机能效和减少燃煤电厂污染物排放具有积极影响。 本论文通过实验室规模的气固流态化分选床, 开展了循环负荷的离线式干法流化 床分选特性研究。 通过实验室自制的磨煤机模拟工业磨机的循环“研磨-分级”作业,完成了循 环负荷及合格煤粉在实验室条件下的制备。 煤系矿物质如石英、 高岭石、 伊利石、 黄铁矿等多在循环负荷中富集,但矿物质的解离程度高,这为循环负荷在气固流 化床中按密度分选创造了有利条件。可选性对比分析表明,循环负荷才是磨煤制 粉系统中最佳的分选对象,而且循环负荷的干法分选应以高密度排矸为主。 循环负荷在稳定气流流化床中的流化与常规 Geldart B 类颗粒类似。随着流 化气速的增加,流化床流型依次出现固定床、临界流化及鼓泡流化状态。但在脉 动气流流化床中, 流化流型根据脉动频率的高低可分为低脉动频率0.5-2.5 Hz时 的间歇性流化、中等脉动频率3-4.5 Hz时的类活塞式流化及高频5-6 Hz时的类 常规流化。 循环负荷在稳定气流流化床中分选时,最佳的操作参数组合是流化时间 10min、气速 5.5 cm/s 及初始床高 90 mm,此时尾煤灰分从入料的 48.11增加至 78.35,尾煤产率 42.86,对应的灰分离析度和综合效率分别为 25.75和 51.69。 相较而言, 脉动气流流化床的分选效果要优于稳定气流流化床的分选效 果。在同样的分选时间和床高条件下,脉动气流分选的最佳参数组合是气速 4.0 cm/s 和脉动频率 6 Hz,对应的尾煤灰分 80.43,尾煤产率 44.58,且灰分离析 度和综合效率分别高达 28.83和 57.12。通过简化的颗粒在自由空间的受力分 析, 认为循环负荷在脉动流化床中分级效果较好的原因可能是颗粒在脉动气流的 作用下拥有更大的纵向位移。 万方数据 II 气固流化床的分选结果说明循环负荷的干法高效分选是可行的。鉴于目前没 有实际使用的针对循环负荷分选的磨煤制粉工艺, 本文提出了一种将循环负荷引 流至磨煤机外并利用脉动流化床分选的新工艺。 利用计算颗粒流体动力学 CPFD 方法,对稳定气流流化床及脉动流化床的微 观流态化过程进行模拟仿真。通过优化后的 Wen-Yu/Ergun 曳力方程,研究了分 选流化床中颗粒的分布情况及气固两相流动规律。与稳定气流相比,脉动气流的 作用使得气泡的运动模式更加有序, 颗粒运动的速度方向极具规律性且基本跟随 着脉动气流周期性的垂直上、下运动。对于分选流化床而言,床内混沌程度的降 低将使得颗粒的返混效应减弱,继而有利于颗粒的分层及分选。模拟结果也佐证 了代表循环负荷的模拟颗粒能够在气固流化床中按密度高效分级。 本论文共有图 73 幅,表格 17 张,参考文献 208 篇,附录 1 份。 关键词关键词燃煤电厂;中速磨煤机;循环负荷;流化床分选;两相流理论;脉动流 化床 万方数据 III Abstract Coal has the highest proportion in national energy consumption, which is closely related to the countrys resource endowment of “rich coal, lean oil, and less gas“. The abundance, reliability, low cost and cleanability of coal resources determine that the primary energy consumption is dominated by coal will not change in a short time. The increase in coal demand in the power industry is the main reason why coal consumption remains high. Since the coal used in power plants is mostly inferior coal with high ash content, showing the properties of high gangue content, great ash discharge, low heat generation, and poor grindability. Thus, the coal needs to be ground several times to meet the particle size requirements of pulverized coal, which causes the mass of the circulating loads inside the mill to be far greater than the mill output. A large amount of coal-based minerals with great hardness, heavey density and inferior grindability are enriched in the circulating loads, which causes the wear of the mill equipment and the increase of grinding energy consumption. At meanwhile, these minerals are also the fundamental source of environmental pollutants such as SO2, NOX, smoke and heavy metals produced by coal-fired power plants. If the mineral components in circulating load can be removed by coal processing, the coal can be desulfurized, reduced ash and upgraded during the grinding process and before combustion, which will significantly reduce the internal cycle rate and wear of the mill and increase the grinding energy efficiency and the reduction of pollutant emissions from coal-fired power plants. In this thesis, a laboratory-scale gas-solid fluidized separation bed was used to carry out a research on the off-line dry separation with circulating loads. The cyclic “grinding-classification” operation of the industrial mill was simulated by the self-made coal mill in the laboratory, and the preparation of circulating loads and pulverized coal were completed under laboratory conditions. Coal-based minerals such as quartz, kaolinite, illite, pyrite, etc. are mostly enriched in circulating loads, but the degree of dissociation of the minerals is relatively high. This creates favorable conditions for the cyclic load to be processed by density in the gas-solid fluidized bed. Through comparison, the circulating loads is the best separating object in the coal pulverizing system, and the dry beneficiation of the circulating loads should be operated based on high-density gangue discharge. The fluidization of the circulating load in a steady gas flow fluidized bed is similar to that of conventional Geldart B particles. With the increase of the fluidization gas velocity, the fluidized bed flow pattern appears in sequence of fixed bed, critical 万方数据 IV fluidization and bubbling fluidization. However, in a pulsating fluidized bed, the flow pattern can be divided into intermittent fluidization at low pulsation frequency 0.5-2.5 Hz, piston-like fluidization at medium pulsation frequency 3-4.5 Hz, and virtual conventional fluidization at high frequency 5-6 Hz. When circulating load is separated in a steady flow fluidized bed, the best combination of operating parameters is fluidization time 10min, gas velocity 5.5 cm/s and initial bed height 90 mm. The tailing ash content increases from 48.11 of the feed to 78.35, the tailing yield is 42.86. The corresponding ash segregation degree and overall separation efficiency are 25.75 and 51.69, respectively. In comparison, the separation perance of a pulsating airflow fluidized bed is better than that of a steady flow fluidized bed. Under the same separation time and bed height, the best combination of parameters for pulsating airflow is the gas velocity of 4.0 cm/s and the pulsating frequency of 6 Hz, which corresponds to 80.43 of tailing coal ash and 44.58 of tailing yield. The ash segregation degree and overall separation efficiency are as high as 28.83 and 57.12, respectively. Through a simplified force analysis of particles in free space, it is believed that the reason for the better separation perance of a pulsating fluidized bed may be that particles have greater longitudinal displacement under the effect of pulsating airflow. The results of the separation in the gas-solid fluidized bed show that the off-line dry separation with circulating load is feasible. In view of the fact that there is no practically used coal milling process for cyclic load separation, this paper proposes a new process that diverts the circulating load to the outside of the coal mill and uses a pulsating fluidized bed for separation. The CPFD of computational particle dynamics is used to simulate the micro-scale fluidization process of a steady flow fluidized bed and a pulsating fluidized bed. Through the optimized Wen-Yu/Ergun drag model, the distribution of particles in the separation fluidized bed and the gas-solid two-phase flow law are studied. Compared to steady airflow, the effect of pulsating flow makes the movement pattern of bubbles more orderly. The velocity direction of particle movement is very regular and basically follows the periodic vertical up and down movement of pulsating air flow. For the separation fluidized bed, the reduction of the degree of chaos in bed will weaken the back-mixing effect of the stratified particles, which is beneficial to the stratification process. The simulation results also proved that the simulated particles can be efficiently classified according to density in the gas-solid fluidized bed. 万方数据 V There are 73 figures, 17 tables, 208 reference articles, and 1 appendix in this thesis. Keywords coal-fired power plant; medium-speed coal mill; circulating loads; fluidized bed separation; two-phase flow theory; pulsating fluidized bed 万方数据 VI 目目 录录 摘摘 要要.............................................................................................................................I 目目 录录.......................................................................................................................... VI 图清单图清单........................................................................................................................... X 表清单表清单....................................................................................................................... XIV 变量注释表变量注释表 ............................................................................................................... XV 1 绪论绪论............................................................................................................................ 1 1.1 研究背景与意义 ..................................................................................................... 1 1.2 课题提出 ................................................................................................................. 3 1.3 研究内容及方法 ..................................................................................................... 4 2 文献综述文献综述 ................................................................................................................... 6 2.1 燃煤电厂磨煤制粉系统及循环负荷分选的研究现状 ......................................... 6 2.2 流态化干法选煤概述 ........................................................................................... 13 2.3 CPFD 数值模拟 ..................................................................................................... 18 2.4 本章小结 ............................................................................................................... 20 3 试验研究系统试验研究系统 ......................................................................................................... 21 3.1 实验室规模脉动流化床分选系统 ....................................................................... 21 3.2 数据采集装置 ....................................................................................................... 23 3.3 分析与计算软件 ................................................................................................... 25 3.4 本章小结 ............................................................................................................... 25 4 循环负荷及合格煤粉的矿物学特性对比分析循环负荷及合格煤粉的矿物学特性对比分析 ..................................................... 26 4.1 引言 ....................................................................................................................... 26 4.2 物料准备及分析方法 ........................................................................................... 27 4.3 矿物组成对比分析 ............................................................................................... 29 4.4 循环负荷和合格煤粉的可选性对比分析 ........................................................... 32 5 循环负荷在气固流化床中流化特性研究循环负荷在气固流化床中流化特性研究 ............................................................. 38 5.1 引言 ....................................................................................................................... 38 5.2 床层压降和最小流化气速 ................................................................................... 39 5.3 颗粒及气泡运动特性 ........................................................................................... 43 5.4 压力信号频谱分析 ............................................................................................... 50 5.5 本章小结 ............................................................................................................... 52 万方数据 VII 6 循环负荷在气固流化床中分选特性研究循环负荷在气固流化床中分选特性研究 ............................................................. 53 6.1 分选效果评价与实验数据的置信度分析 ........................................................... 53 6.2 稳定流化床分选 ................................................................................................... 55 6.3 脉动流化床分选 ................................................................................................... 59 6.4 颗粒运动动力学分析 ........................................................................................... 66 6.5 循环负荷在线分选工艺探讨 ............................................................................... 67 6.6 本章小结 ............................................................................................................... 70 7 循环负荷在气固流化床中分选过程的数值模拟循环负荷在气固流化床中分选过程的数值模拟 ................................................. 71 7.1 控制方程和计算模型 ........................................................................................... 71 7.2 Wen-Yu/Ergun 曳力方程优化 ............................................................................... 73 7.3 颗粒及气泡的运动行为 ....................................................................................... 75 7.4 模拟颗粒在气固流化床中的分级效果 ............................................................... 80 7.4 本章小结 ............................................................................................................... 83 8 结论与展望结论与展望 .............................................................................................................. 84 8.1 结论 ....................................................................................................................... 84 8.2 展望 ..................................................................................................................
展开阅读全文