全液压凿岩台车设计及钻臂性能分析.pdf

返回 相似 举报
全液压凿岩台车设计及钻臂性能分析.pdf_第1页
第1页 / 共95页
全液压凿岩台车设计及钻臂性能分析.pdf_第2页
第2页 / 共95页
全液压凿岩台车设计及钻臂性能分析.pdf_第3页
第3页 / 共95页
全液压凿岩台车设计及钻臂性能分析.pdf_第4页
第4页 / 共95页
全液压凿岩台车设计及钻臂性能分析.pdf_第5页
第5页 / 共95页
点击查看更多>>
资源描述:
工程硕士专业学位论文 全液压凿岩台车设计及钻臂性能分析 Design of Full Hydraulic Drilling Jumbo and Perance Analysis for Drill Arm 作者王愁 导师刘送永 教授 中国矿业大学 二○二一年五月 万方数据 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书)。 作者签名导师签名 年月日年月日 万方数据 万方数据 中图分类号TD421学校代码10290 UDC621密级公开 中国矿业大学 工程硕士专业学位论文 全液压凿岩台车设计及钻臂性能分析 Design of Full Hydraulic Drilling Jumbo and Perance Analysis for Drill Arm 作者王愁导师刘送永 申请学位工程硕士培养单位机电工程学院 学科专业机械工程研究方向矿山机械 答辩委员会主席李建平评 阅 人 二○二一年五月 万方数据 万方数据 致谢致谢 时光荏苒,岁月如梭,在职研究生的学习即将结束,有欢喜、有焦虑、有失 败、有收获,在此向学习过程中教导和帮助过我的家人、老师、朋友、同事致以 最诚挚的感谢。 以真诚的感谢献给刘送永导师,感谢他对本人学习以及工作上的帮助,让我 学以致用,理论结合实际,不断提高自己技术工作方面的能力,开拓思维方法以 及本专业相关研究方向的前沿技术及理念。 在此谨向刘老师致以崇高的敬意和衷 心的感谢,祝刘老师身体健康,万事如意 感谢家人对我攻读在职研究生的大力支持和理解。 感谢杜长龙老师、 李建平老师及江苏中机矿山设备有限公司各位同事对于本 人的关怀和教导,有了老师和同事的支持和引导,我才坚持在职研究生的报名和 认真学习。 感谢董事长杜长亭先生及江苏安能钻掘设备科技有限公司的全体同事在钻 机设计制作以及后期使用试验方面的大力支持和紧密配合, 有了他们的坚持和奋 斗,才使得钻机项目有了稳定发展,并不断提升质量和技术创新。 最后,衷心感谢各位老师的批评指正,在此谨向各位老师表示衷心的谢意。 万方数据 万方数据 I 摘摘要要 全液压凿岩台车是一种集机械、液压及电气系统于一体的现代开采、凿岩设 备,在矿山、巷道、隧道以及地下施工中应用广泛。该设备不仅大大地减少了施 工人员的体力消耗,提高了钻孔作业效率,改善了施工作业条件,而且极大地提 高了作业的自动化水平。钻臂作为全液压凿岩台车作业的核心部件,其性能直接 影响了凿岩台车钻孔作业的效果。凿岩台车通过钻臂的运动实现定位、钻孔、凿 岩等动作,因此,为了提高凿岩台车的施工效率、稳定性与安全性,需要针对钻 臂的运动和动力学性能开展全面研究。 为了克服现有凿岩台车在无法进行小型巷道上施工作业方面的不足, 设计了 一款结构紧凑且可实现小型巷道机械化掘进作业的全液压凿岩台车, 并建立了三 维虚拟模型。 在将凿岩台车钻臂进行机构学简化的基础上, 采用经典的指数积法, 建立了其位置正/逆解模型和速度正/逆解模型,实现了操作空间和关节空间之间 位置和速度的映射。 通过数值仿真和虚拟仿真对比验证了所建立运动学模型的正 确性。此外,结合凿岩台车钻臂的正解模型,采用蒙特卡洛算法计算了其可达工 作空间,初步验证了钻臂设计的合理性。 在运动学分析的基础上,采用牛顿-欧拉法和虚功原理建立了全液压凿岩台 车钻臂的刚体动力学模型, 该模型可以快速求解出给定轨迹下液压缸所需的驱动 力/力矩,便于液压系统的校核和选型设计。通过数值仿真和虚拟仿真对比验证 了所建立动力模型的准确性。 由于所建立的动力学模型难以求解各结合部的作用 力和反作用力, 基于 ADAMS 软件搭建了虚拟样机模型。 分析了钻臂在三种危险 工况下的各油缸速度、加速度、关键铰接点的作用力曲线,油缸的相关曲线可以 为油缸的选型及驱动源优化提供参考, 各关键点的受力情况可以为部件的有限元 分析提供数据参考。 基于 ANSYS 有限元分析软件对钻臂进行了静力学研究,得到了其应力云图 以及位移变形图,验证了整体结构强度的合理性。此外,对主要部件进行了模态 分析,得到了其固有频率与模态振型图,验证了冲击载荷下的稳定性与安全性, 为钻臂的结构优化及高效工作提供了科学支撑。 搭建了全液压凿岩台车的实验样机,以 PLC 为控制核心构建了钻臂的控制 系统,根据运动学理论分析结果,并结合传感器反馈的动作信息搭建了人机交互 界面,实现了全液压凿岩台车的自动化控制和关键信息的实时显示,最后通过开 展实际钻孔试验验证了钻臂的工作性能。 关键词关键词全液压凿岩台车;钻臂;正逆运动学;动力学分析;有限元分析 万方数据 II Abstract Full hydraulic drilling jumbo is a kind of modern mining and drilling equipment which integrates mechanical, hydraulic and electrical system. It is widely used in mine, roadway, tunnel and underground construction. The equipment not only greatly reduces the physical consumption of the construction personnel, improves the drilling efficiency, improves the construction conditions, but also greatly improves the automation level of the operation. The equipment not only greatly reduces the physical consumption of the construction personnel, improves the drilling efficiency, improves the construction conditions, but also greatly improves the automation level of the operation. As the core part of the full hydraulic drill jumbo, the perance of the drill arm directly affects the drilling effect of the jumbo. The jumbo realizes positioning and drilling by the movement of the drill arm. Therefore, in order to improve the construction efficiency, stability and safety of the jumbo, it is necessary to conduct a comprehensive study on the kinematics and dynamic analysis of the drill arm. In order to overcome the shortcomings of the existing rock drilling jumbo in the construction of small tunnels, a full hydraulic drilling jumbo with compact structure is designed, which can realize the mechanized excavation of small tunnels, and a three-dimensional virtual model is established. On the basis of simplifying the mechanism of the drill arm of the rock drilling jumbo, the forward / inverse model of its position and the forward / inverse model of its velocity are established by using the classical exponential product , and the mapping of position and velocity between the operation space and the joint space is realized. Through the comparison of numerical simulation and virtual simulation, the correctness of the established kinematics model is verified. In addition, combined with the forward model of the drill arm of the jumbo, the reachable workspace is calculated by Monte Carlo algorithm, and the rationality of the drill arm design is preliminarily verified. On the basis of kinematic analysis, the rigid body dynamic model of the drill arm of the full hydraulic rock drilling jumbo is established by using Newton Euler and virtual work principle. The model can quickly solve the driving force / torque required by the hydraulic cylinder under a given trajectory, which is convenient for the verification and design of the hydraulic system. The accuracy of the dynamic model is verified by the comparison of numerical simulation and virtual simulation. Because the dynamic model is difficult to solve the force and reaction of each joint, a 万方数据 III virtual prototype model is built based on ADAMS. The velocity, acceleration and force curves of each cylinder under three dangerous working conditions are analyzed. The correlation curves of the cylinder can provide reference for cylinder selection and driving source optimization, and the stress conditions of each key point can provide data reference for the finite element analysis of components. Based on ANSYS finite element analysis software, the statics of the boom is studied, and the stress cloud diagram and displacement deation diagram are obtained, which verify the rationality of the overall structure strength. In addition, the modal analysis of the main components is carried out to obtain the natural frequency and mode pattern diagram, which verifies the stability and safety of the impact load, and provides scientific support for the structural optimization and efficient work of the drill arm. The experimental prototype of full hydraulic drilling jumbo is built, and the control system of drilling arm is built with PLC as the control core. According to the results of kinematics theory analysis and combined with the action ination feedback from the sensor, the human-machine interaction interface is built to realize the automatic control of the full hydraulic drilling trolley and the real-time display of key ination. Finally, the perance of the drill arm is verified by the actual drilling test. Keywords full hydraulic drilling jumbo; drill arm; forward and inverse kinematics; dynamic analysis; finite element analysis 万方数据 IV 目目录录 摘要摘要................................................................................................................................ I 目录目录............................................................................................................................. IV 图清单图清单...................................................................................................................... VIII 表清单表清单........................................................................................................................XII 变量注释表变量注释表.............................................................................................................. XIII 1 1 绪论绪论1 1 1.1 研究背景及意义1 1.2 国内外研究现状2 1.3 主要研究内容8 1.4 本课题来源9 2 2 全液压凿岩台车本体结构设计全液压凿岩台车本体结构设计 1 10 0 2.1 全液压凿岩台车工作原理简述 10 2.2 全液压凿岩台车自动钻孔总体方案 12 2.3 全液压凿岩台车三维模型设计 15 2.4 设计时应注意的问题 17 2.5 本章小结 17 3 3 全液压凿岩台车钻臂运动全液压凿岩台车钻臂运动学学分析分析 1818 3.1 坐标系建立 18 3.2 位置及速度分析 19 3.3 仿真分析 22 3.4 本章小结 28 4 4 全液压凿岩台车钻臂动力学分析全液压凿岩台车钻臂动力学分析 2 29 9 4.1 动力学建模 29 4.2 虚拟样机建模 31 4.3 动力学仿真 32 4.4 本章小结 41 5 5 全液压凿岩台车钻臂有限元分析全液压凿岩台车钻臂有限元分析 4 43 3 5.1 有限元法介绍 43 5.2 模型的导入及前处理 44 5.3 有限元结构的静力分析 45 万方数据 V 5.4 模态分析51 5.5 本章小结55 6 6 全液压凿岩台车钻臂实验分析全液压凿岩台车钻臂实验分析5 56 6 6.1 全液压凿岩台车钻臂动作分析56 6.2 钻臂控制方案56 6.3 PLC 控制系统硬件的选取 58 6.4 系统硬件布置方案59 6.5 地上实验59 6.6 井下实验62 6.7 本章小结65 7 7 结论结论和展望和展望6 66 6 参考参考文献文献6 67 7 作者作者简历简历7 71 1 论文原创性声明论文原创性声明72 学位论文数据集学位论文数据集73 万方数据 VI Contents AbstractⅠ ContentsⅠⅤ List of FiguresⅤⅠⅠⅠ List of TablesXII List of VariablesXIII 1 Introduction1 1.1 Research Background and Significance.. 1 1.2 Research Status at Home andAbroad ....2 1.3 Main Research Contents...8 1.4 Source of this Project ...9 2 Structural Design of Full Hydraulic Drilling Jumbo10 2.1 Working Principle of Full Hydraulic Drilling Jumbo.10 2.2 Overall Scheme of Automatic Drilling with Full Hydraulic Drilling Jumbo12 2.3 The Whole Structure Design of Full Hydraulic Drilling Jumbo.15 2.4 Problems in Design..17 2.5 Summary..17 3 Kinematics of Drill Arm of Full Hydraulic Drilling Jumbo18 3.1 Coordinate Systems .18 3.2 Position and Velocity Analysis .19 3.3 Verification...22 3.4 Summary..28 4 Dynamic Analysis of the Drill Arm of Full Hydraulic Drilling Jumbo29 4.1 Dynamic Modelling.29 4.2 Virtual Prototyping .31 4.3 Simulation.32 4.4 Summary.41 5 Finite Element Analysis of Drill Arm of Full Hydraulic Drilling Jumbo43 5.1 Introduction to Finite Element .43 5.2 Model Import and Preprocessing...44 万方数据 VII 5.3 Static Analysis of Finite Element Structure...45 5.4 Modal Analysis.......................................................................51 5.5 Summary.55 6 Experimental Analysis of Drill Arm of Full Hydraulic Drilling Jumbo56 6.1 Analysis of Drill Arm Action of Full Hydraulic Drilling Jumbo...56 6.2 Control Scheme of Drill arm .56 6.3 Selection of PLC Control System Hardwar 58 6.4 System Hardware Layout Scheme....59 6.5 Ground Experimental 59 6.6 Underground Experiment...62 6.7 Chapter Summary...65 7 Conclusions and Prospects66 References...67 Author’s Resume71 Declaration of Thesis Originality72 Thesis Data Collection73 万方数据 VIII 图清单图清单 图序号图名称页码 图 1-1气腿式凿岩机和全液压凿岩台车1 Figure 1-1Air leg rock drill and full hydraulic drilling jumbo1 图 1-2全液压凿岩台车钻臂及推进器6 Figure 1-2Drill arm and propeller of full hydraulic drilling jumbo6 图 2-1全液压凿岩台车二维平面图10 Figure 2-1Two dimensional plan of full hydraulic drilling jumbo10 图 2-2全液压凿岩台车工作流程12 Figure 2-2The work process of full hydraulic drilling jumbo12 图 2-3钻臂组成12 Figure 2-3Composition of drill arm12 图 2-4行走机构组成13 Figure 2-3Composition of walking mechanism13 图 2-5履带行走液压原理图14 Figure 2-5Hydraulic schematic diagram of crawler14 图 2-6液压系统原理图15 Figure 2-6Schematic diagram of hydraulic system15 图 2-7全液压凿岩台车三维模型图17 Figure 2-7Three dimensional model of full hydraulic drilling jumbo17 图 3-1凿岩台车钻臂19 Figure 3-1Diagram of drill arm19 图 3-2凿岩台车钻臂的虚拟模型23 Figure 3-2Virtual model of drill arm23 图 3-3凿岩台车钻臂末端运动轨迹24 Figure 3-3Trajectory of the end-point of the drill arm24 图 3-4液压油缸的位移/角位移25 Figure 3-4Displacement/angular displacement of the hydraulic cylinder25 图 3-5液压油缸的速度/角速度26 Figure 3-5Velocity/angular velocity of the hydraulic cylinder26 图 3-6钻臂工作空间27 Figure 3-6Workspace27 图 4-1虚拟样机技术设计流程图31 Figure 4-1Flow chart of virtual prototype technology design31 图 4-2钻臂虚拟样机模型32 Figure 4-2Virtual prototype model of drill arm32 图 4-3液压油缸的加速度/角加速度33 Figure 4-3Acceleration/angular acceleration of the hydraulic cylinder33 图 4-4液压油缸的驱动力/驱动力矩34 Figure 4-4Driving force/torque of the hydraulic cylinder34 万方数据 IX 图 4-5钻臂危险工况 1 下的三维模型35 Figure 4-5Simulation model of drill arm at condition 135 图 4-6危险工况 1 下的油缸、推进器速度曲线35 Figure 4-6Speed curve of oil cylinder and propeller at dangerous condition 135 图 4-7危险工况 1 下的油缸、推进器加速度曲线36 Figure 4-7Acceleration curve of oil cylinder and propeller at dangerous condition 136 图 4-8钻臂危险工况 1 下各铰接点受力变化曲线36 Figure 4-8 Stress variation curve of each hinge point of drill arm at dangerous condition 1 36 图 4-9危险工况 1 下的各驱动油缸受力变化曲线图37 Figure 4-9Stress variation curve of each driving cylinder at dangerous condition 137 图 4-10钻臂危险工况 2 下的三维模型38 Figure 4-10Simulation model of drill arm at condition 238 图 4-11钻臂危险工况 2 下轴向回转摆动油缸角速度变化曲线38 Figure 4-11Angular velocity of axial swing oil cylinder at condition 238 图 4-12钻臂危险工况 2 下轴向回转摆动油缸角加速度变化曲线38 Figure 4-12Angular acceleration of axial swing cylinder at condition 238 图 4-13钻臂危险工况 2 下各驱动油缸受力变化曲线39 Figure4-13Force of each driving cylinder of drill arm at condition 239 图 4-14钻臂危险工况 2 下各铰接点受力变化曲线39 Figure 4-14Stress of each hinge point of drilling arm at condition 239 图 4-15钻臂危险工况 3 下的三维模型40 Figure 4-15Simulation model of drill arm at condition 340 图 4-16钻臂危险工况 3 下各驱动油缸速度变化曲线40 Figure 4-16Force of each driving cylinder of drill arm at condition340 图 4-17钻臂危险工况 3 下各驱动油缸加速度变化曲线40 Figure4-17Acceleration curve of each driving cylinder of drill arm at condition 340 图 4-18钻臂危险工况 3 下轴向回转摆动油缸角速度、角加速度变化曲线图41 Figure 4-18 Angular velocity and acceleration of axial swing oil cylinder at condition 3 41 图 4-19钻臂危险工况 3 下各铰接点受力变化曲线 41 Figure4-19 Stress variation curve of each hinge point of drill arm at dangerous condition 3 41 图 5-1有限元分析流程44 Figure 5-1Flow of finite element analysis44 图 5-2安装座网格划分结果47 Figure 5-2Grid division results of mounting base47 图 5-3安装座应力云图47 Figure 5-3Stress nephogram of mounting base47 图 5-4安装座位移变化图48 Figure 5-4Diagram of seat movement48 万方数据 X 图 5-5主臂有限元划分48 Figure 5-5Finite element division of main drill arm48 图 5-6主臂应力云图49 Figure 5-6Stress nephogram
展开阅读全文

资源标签

最新标签

长按识别或保存二维码,关注学链未来公众号

copyright@ 2019-2020“矿业文库”网

矿业文库合伙人QQ群 30735420