资源描述:
第41卷第4期 2013年8月 煤田地质与勘探 COALGEOLOOY 2.长安大学地质工程系,陕西西安710054 摘要为了更好的反映基坑开挖后土体的变形非线性特性,采用革函数描述土体剪切过程中切线 模量随主应力差值增大而衰减的过程。积分得到主应力差值和应变的数学表达式,其反映的数学 规律符合一般土力学模型的要求。对应于不同的革指数,该表达式可以很好拟合三轴试验应力- 应变曲线。基于Duncan-Chang模型参数确定的方法,提出了本文模型参数的确定方法。在通用有 限元软件基础上二次开发了模型的计算程序.应用于某基坑变形的计算结果表明,本文提出的模 型比Duncan-Chang模型能更好的预测围护结构的变形. 关键词非线性弹性模型;改进切线模量;二次开发;基坑工程 中图分类号TU43文献标识码ADOI 10.3969/j.issn. l 001-1986.2013.04.013 Nonlinear elastic model modifying tangent modulus WUMing1气PENGJianbing1气HUANGQiangbing12, DENG Yahong口,LENGYanqiu1,2 I. Key Laboratory of Western Chinas Mineral Resources and Geological Engineering, Minis即ofEducation, Chang’an Universi纱,Xian710054, China; 2. School of Geological Engineering and Geomatics, Chang’an University, 刀’an710054, China Abstract To reflect well the nonlinear deation character of soil during excavation, power function was em- ployed to describe the process of tangent modulus decay with the principal stress difference decreasing during the sh巳aringprocess of soil. The mathematical expressions between principal stress difference and strain were attained by integration, which was consistent with the requirement of general soil model. The expressions with different power exponents could fit stress-strain curves of triaxial test. Based on the defining by parameters of Dun- can-Chang model, the parameters of model were put forward. On the plat of a general finite element software the computing programs for the model were redeveloped, which was employed to precast deep excavation deation. The results show the model proposed can predict better the enclosure deation than Duncan-Chang model. Key words nonlinear elastic model; improved tangent modulus; redevelopment; excavation engineering. Duncan[JJ首次应用有限元法对边坡开挖的性状 进行了分析,通过与实测资料对比,认为有限元法可 以较好地预测边坡开挖。接下来许多学者基于 Duncan-Chang模型研究了基坑工程的相关问题[2-14], 积累了许多工程经验。但是,研究发现Kondner[14l 的双曲线假设不能完全反映原状土的应力一应变关 系。因此,许多学者基于Duncan-Chang模型做了很 多改进[忌14]。王立忠等[8]将土体应力一应变关系分为应 变软化型和应变硬化型,在Duncan-Chang模型的基 础上,考虑了土的结构损伤,引人损伤比的概念,对 Duncan-Chang模型进行了修正。但是这种应力一应变 分段的模型实现程序比较麻烦,稍有不慎就不收敛, 不便于应用。王伟等[10-11,13]同样认为双曲线假设不能 收稿日期2012-04-17 很好的描述偏应力差和轴向应变,引人“半值强度指 数”概念建立了土体应力应变曲线的数学特征方程, 分析了双曲线应力应变模型的数学缺陷,建立了土体 应力-应变曲线的3参数新模型,改进了土体的切线, 模量表达,给出了参数确定方法,并对三轴试验结果 进行了模拟。殷德顺[12]认为Duncan-Chang模型基于 双曲线假设的做法“不仅违反了土体性质多样的现 实,也容易造成模型与试验结果不符,引起误差”, 提出了负乘幕本构的切线模量。王伟[11]、殷德顺[12] 等人的思路虽然没有反映原位土体的结构特性,但是 从一定程度上改进了Duncan-Chang模型,而且利于 程序实现。本文作为尝试,基于这一思路,改进了 Duncan-Chang模型,编制了相应的计算程序。最后 基金项目中央高校基金项目(2013G1502006; 2013G3294013);国家自然科学基金(青年)项目(40902080/00214 作者简介吴明(1979一),男,陕西蓝田人,讲师,博士后,从事岩土工程研究. ChaoXing 的变化都描述准确。为此,本文从改进切线模量E1和 主应力差值(σ,-σ3)关系的基础上,做了如下工作。 1.1 公式推导 假设土体切线模量E1随主应力差值(σ,-σ3)衰 减的表达式如式(1)所示,式中a、b为非负常数,X 取1,2,,n。χ取变值可以保证对弹性模量的描 述控制在一个范围内。对常规三轴试验(CU应力-应 变曲线,其切线模量可写成式(2)。这里取定积分如 式(3),而不同于Duncan-Chang模型中的双曲线假定。 Et ab一(σ1一σ3Z1 Et哇型吼叫))Z2 fa由=f;问)1川σl一σ3 u u b一(σ1-σ3;c 当xl时,积分式(3)得 q叫=b-毛 e-- 当aε比较小时,可以利用麦克劳林公式展开e eaabZo 1.3 参数确定 a.初始模量E; Duncan1970)的试验表明E;随着σ3变化,如果 在双对数纸上点绘lgE;I马)-lg(σ3/乌)的关系曲线 为一条直线,如图3所示。直线的截距为lgkt,斜率 为n1,Pa为大气压。于是有 鸟=刊号)叫9 式中ι为加载弹性模数(无量纲),试验参数;n1为 加载弹性指数(无量纲),试验确定;Pa为大气压,与 围压σ3量纲保持一致。 咄咄- n. -bh - eb A宇lll咿 lg乎 图3lgE/p.-lg 0-3/p. Fig. 3 Curve of lgE;lp.)一lg(σJfp. 对于文章模型初始模量E;abz,有lg(αbZI凡)- lg(σ3/乌)的关系曲线为一条直线。拟合出直线,则 直线的截距为lg儿斜率为n1。 b.切线模量E1 由公式的数学特性分析可知式(1)中b为偏应力 差(σl一句)的极限应力(σ广内)u,即 b=(σI-σ3u 10 实际中土体达不到极限应力,一般认为当土体达 到Mohr-Coulomb破坏应力(σ1-σ3r即发生破坏。在 不同的围压σ3下有式(10)和式(11)存在,Re是破坏比。 Re_ a -a飞 一一一一」11 (σ1-σ3u ccos2σ3 sin (σ1一σ3r . f 1-Slll0.49时,令v0.49。 e.卸载模量 和切线弹性模量不同的是,卸载模量只随σ3变 化,而不随(σI-σ3)变化。 t vi回 E町=k.田Pal主主|19 \,Pa 式中儿为卸载弹性模数(无量纲),试验确定;nur 为卸载弹性指数(无量纲),试验确定;Pa为大气压, 与围压σ3量纲保持一致。 t改进切线模量模型前参数 假定xl,2,3,的情况下,通过最小二乘法从常 规三轴试验应力应变曲线按照式(6)和式(7)回归出a 和b值,再按照Duncan-Chang模型常规参数的确定方 法,可以得到其他参数,具体流程如图4。这样本文 模型就有10个参数kt、nt、k町、n町、kb、mb、 c、伊。、Re、x。比通常Duncan-Chang模型多了一个 ChaoXing 53 23 3BE d44 d55 d66 =一一一一 9B-E 增量步开始调用UMAT 程序流程如图5o 明等改进切线模量的非线性弹性模型 参数x,而且其他9个参数是随着x取1,2,3,不同而 变化。通过取不同的X值,尽量使Et关系式接近三轴 试验的应力应变关系,把岩土工程求解的问题控制在 某一范围内。为了验证这一思想,接下来将把本文模 型通过ABAQUS用户子程序接口实现,并通过数值 模拟三轴试验和具体工程实例来验证。 吴第4期 』算主应力和应力水平 计贷Jacobian矩阵,应 力增馈,修正应力 UMAT退出.增盘步结束 图5UMAT计算流程图 Fig. 5 Computing process of UMAT x,鼠,n,,k.,, m,, k. n,,”c,伊,,R, 图4参数求解过程 Process of solution parameters 3.1 工程概况 温州市新世纪商务大厦,总建筑面积约83460d,其 中主楼层次为20层、27层,框-剪结构,高度lOOm, 以4层裙房相接;地下室3层,深度13.05m。基础 采用钻孔灌注桩。 周边环境及道路北面街区道路距基坑外边线约 13 m;南侧道路距外边线约11m基坑西侧临近前 州河,距外边线12m左右;东侧为多幢民用建筑。 周边建筑物基坑东侧有多幢民用建筑,基础为 15.5 m的水泥搅拌桩。其中,基坑东南角为一幢“L”型 的6层民用住宅,该住宅的一角与基坑外边线相距仅 5.8m左右;基坑东侧是一幢6层的民用住宅,距外边 线11m左右;基坑东北侧为一幢5层的民用住宅,距 外边线约为15m。基坑周边建筑物分布情况见图6。 周边管线本工程基坑西北侧分布有污水管道。 以基坑北侧基坑围护结构为例围护结构采用单 排φ9001100钻孔灌注桩(桩底标高为一29.60m)加 3层内支撑的围护方案,如图7所示。 根据场地土的物理力学性质、成因类型等,将场 地勘察深度范围岩土分成素填土、粘土、淤泥、淤泥 质粘土、粉质粘土混粉砂、卵石与圆砾等4个工程地 质层及6个亚层。影响基坑开挖深度范围内的各土层 的物理力学指标如表1。 3.2 鼓值模型 选用二维平面模型对基坑开挖过程进行模拟,取 工程验证3 20 Fig. 4 ABAQUS作为一个大型通用有限元软件,采用 的是弹塑性理论的应力符号约定。但非线性弹性模型 是土力学中的本构模型,遵从土力学的符号约定。因 此,在开发该模型时,应该将土力学中大主应力町变 为ABAQUS中的小主应力-吨,土力学中小主应力 σ3变为ABAQUS中的大主应力-σ1,应变也是如此。 编程开发时,应改写本构模型的数学表达式,将符合 土力学约定的数学表达式变换为符合弹塑性理论约 定的数学表达式[15]。 这样可以全部确定改进切线模量模型刚度系数 矩阵的元素,然后可按照三维问题或平面应变问题的 数学表达式形成相应的刚度系数矩阵[D]。如对于三 维空间的非线性模型,则有 d11 d12 d13 0 d21 d22 d23 0 d,, dn d〓O [D]I I ,{. O d44 0 0 0 0 0 0 0 0 矩阵式(20)中的元素分别为 3B3BE d .. d呐=仇,=一一一一一- .. JJ 9B-E 00000句 OOOOGo 程序实现2 21 22 i,jl, 2, 3, it j J 3B3B-E ,. - -ij 9B-E ChaoXing 54 煤田地质与勘探第41卷 图6基坑平面布置示意图 Fig. 6 Plan of pit excavation 15 kPa -0.6m -J 6m -0.6m 一10.6m 3-1淤泥 -13.6 m -13.6 m -29.6 m 3-2淤泥 图7基坑围护结构示意图 Fig. 7 Sketch of enclosure structure of pit 表1各土层物理力学指标 Table 1 Mechanical inds of different soil layers 层序土层 天然密度粘聚力内摩擦角 yl(剧m-3c/kPa 伊/(。) 2 粘土18.7 15.3 14.6 3-1 淤泥16.9 15 3.8 3-2 淤泥17.4 16 4.7 3-3 淤泥质粘土17.6 18.0 10.0 基坑北侧测斜管(CX5)所在位置的支护剖面分析。由 于基坑形状复杂,对一些几何参数做了相应简化。基 坑的宽度为40m,开挖深度H13.05m,围护结构采 用份001100的钻孔灌注桩,嵌固深度15.95m。设 有3层支撑,其中心分别位于地下1.05m、6.05m和 9.75 m,第1、3层支撑截面800mm x 800 mm,第2 层支撑截面900mm x 900 mm,水平间距10m。 本文主要是围护结构侧向位移的变化,所以问题 可以简化成平面应变问题,基坑外的计算区域取3倍 的半基坑宽度(60时,深度方向取两倍的围护桩的长度 40m)。所以整个模型的计算域为80mx60 m。围护桩, 支撑,土体的边界均简化成直线。模型如图8所示。 3道支撑 - 需h ’Mm怪零提华园 - EN - "、 基坑有限元模型简图(单位m Fig. 8 Sketch of finite element model of pit 粘土层层厚l.05m,土体本构模型取Duncan-Chang 模型;3-1淤泥层厚12m,基坑开挖土体基本处于该 层,土体本构模型取本章改进切线模量的非线性弹性 模型;3-2淤泥层厚约47m,围护桩有29m处于该 层土中,土体本构模型取本文模型。各层土体计算参 数如表2所示。 3.3 计算结果 通过应用本文模型在ABAQUS中实现的用户 子程序,对x为1、2两种情况,数值模拟温州新世 纪基坑开挖的结果。图9是基坑侧向位移等值线图, 从图中可以看出,由于支撑和围护结构的共同作用, 使得基坑底面上部土体的侧向位移很小,在基坑底 面处土体的侧向位移较大。图10是围护结构沿基坑 深度侧向位移的对比图,图中罗列有基坑北侧测斜 管(CX5)的监测数据作为对比。从图10中可以看出, 围护结构靠近基坑坑底处变形较大,而基坑坑底上 部较小,比较符合图9的基坑土体侧向位移的等值 线图。图10中,用本文模型取x2的计算结果比较 符合测斜管(CX5)的监测数据。xl时的围护结构侧 向位移结果在基坑坑底以上较测斜管(CX5)的 表2各土层计算参数指标 Table 2 Parameters 土层 x k. n, kb ”’b Rt c/kPa 14, 6 k町 n町 粘土DC模型125 0.69 92 0.45 0.82 15.3 16 。2.6 0.69 3-1淤泥 250.3 0.28 225.47 0.352 4 0.882 25 8 。617.5 0.28 2 260.3 0.3 225.47 0.352 4 0.852 25 8 。909.5 0.3 3-2淤泥 253.36 0.49 125.47 0.46 0.952 28 6 。2.6 0.49 2 255.6 0.53 125.47 0.46 0.952 28 6 。683 0.53 ChaoXing 第4期吴明等改进切线模量的非线性弹性模型 55 监测数据小,基坑坑底以下的侧向位移结果较测斜 管(CX5)的监测数据大,但是总体在监测数据周围小 区域变动。通过图10中的比较可以得出本章提出 的改进切线模量的非线性弹性模型,能够通过取不 同的x值使基坑侧向位移结果比较接近实测值。也 就是说,基于本文模型实现的用户子程序,可以把岩 土工程待求解的量值控制在某一范围内,通过取不同 的X值尽量逼近真实值,显示出本文模型的优越性。 axI bx2 图9基坑侧向位移等值线 Fig. 9 Contours of lateral displacement of pit 0 俨“---xI 一’-x2 『』cx5(监测资料) 4 。。吨 ,& ro E\刨陈运制 20 24 0 20 40 60 80 100 侧向位移Imm 图10基坑侧向位移结果对比 Fig. 10 Comparison of lateral displacement of pit 4结论 本文基于Duncan-Chang模型的思想,摒弃Kond ner双曲线假设,建立了改进切线模量的弹性非线性 模型,卸载模量、体积模量沿用Duncan-Chang模型。 基于ABAQUS的用户子程序二次开发模块,编写了 相应的数值程序,用来模拟基坑工程开挖过程侧向位 移的变化情况。计算结果和分析表明 a.改进切线模量的弹性非线性模型与Dunca n-Chang模型相比,没有引人Kondner的双曲线假定, 因此理论基础较Duncan-Chang模型强。该模型数学 特性良好,参数概念明确,参数易于确定。 b.改进切线模量的弹性非线性模型易于程序实 现,数值上容易收敛。 c.通过模拟具体基坑工程实例,表明改进切线 模量的弹性非线性模型可以把岩土工程的变形值控 制在一定范围内,并且尽量逼近真实值,具有一定优 越性,可应用于实践。 参考文献 [l DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and-str臼且msoils[巧.Journal of the Soil Mechanics and Founda- tions Division. ASCE, 1970, 94SM3 637-659. [2)曾国熙,潘秋元,胡一蜂.软粘土地基基坑开挖性状的研究[巧 岩土工程学报,1988,103 13-22. [3)应宏伟,谢永利,潘秋元,等深基坑挡土结构土压力数值研 究[巧.西安公路交通大学学报,1998,184 26-31. [4 HABIBAGA皿G,MOKHBE阳M.Hyperbolic model for volume change behavior of collapsible soils[几CanadianGeotechnical Journal, 19982 264-272. [5)俞建霖,赵荣欣,龚晓商.软土地基基坑开挖地表沉降量的数 值研究[月.浙江大学学报(自然科学版),1998, 321 95-101. [6)俞建霖.基坑性状的三维数值分析研究[月.建筑结构学报, 2002, 234 65-70. [7] SANCHAI M, EMMANUEL D. Determination of ground reaction curve for hype巾。liesoil model using也ehodograph me出od[巧. Canadian Geotech且icalJo山nal,2005, 423 964-968. [8)王立忠,赵志远,李玲玲考虑土体结构性的修正邓肯一张模 型[巧.水和l学报,2004{I 83-89. [9)王晓妮,卢廷浩,王伟.土体非线性模型的分段切线筷量研 究[J).河海大学学报(自然科学版),2006 2 204-207. [10)王伟.基于能量耗散原理的土与结构接触面模型研究及应 用[DJ.河海大学,2006. [Ill王伟,卢廷活,周干武教土非线性模型的改进切线模量问岩 土工程学报,2007,293 458-462. [12)殷德顺,王保田.负乘寡本构模型的切线模量[巧.岩土力学, 2009, 307 2168-2172. [13)王伟,宋新江,凌华,等.滨海相软土应力-应变曲线复合 指数-双曲线模型[几岩土工程学报,2010,329 1455-1499. [14)吴明,夏唐代,俞峰基于Duncan-Chang本构的非线性土压 力模型[巧.煤田地质与勘探,2008,362 36-39. [15 KONDNER R L. Hyperbolic s位ess-strainresponse cohesive soils[J. Journal of the Soil Mechanics and Foundation Division, ASCE, 1963, 89SMI 115-143. [16)徐远杰,王观琪,李健.在ABAQUS中开发实现Duncan -Chang本构模型[巧.岩土力学,2004,257 1032 1036. ChaoXing
展开阅读全文