资源描述:
1,Preparationandcharacterizationofclay/nanocompositebipolarplateforfuelcell,,,2,Outline,IntroductionTheoryandLiteraturereviewPatentSearchObjectivesExperimentalSectionResultsandDiscussionConclusions,3,IntroductionWhatisFuelcell,4,Clean,safe,andquietHighenergyefficiencyLowemissionsEaseinoperating,TypesofFuelCellProtonexchangemembranePEMFCAlkalinePhosphoricacidPAFCMoltencarbonateMCFCSolidoxideSOFC,,AdvantageofFuelCells,,5,FuelCellComparisons,NATURE,2001,,,,,6,Delphi–BMW–GlobalThermoelectricauxiliarypowerunit,PrototypeNATURE,2001,HitachifuelcellPDA,HondaFCXV4,SourcesHitachiLtd,BMWMotorCompanyandHondaMotorCompany,7,ElectrodeRenb,Z.;Chou,T.W.CompositesScienceandTechnology,2001,61,1899–1912.Alexandre,M.,Dubois,P.MaterialsScienceandEngineering,2000,28,1-63.Lu,Y.,Yin,Y.,Li,Z.Y.,Xia,Y.Nanoletter,2002,2,785-788.,,,,CarbonNanotubes1,LayerSilicateNanocomposites2,Nanoparticles3,10,Structureandpropertiesofmontmorillonitelayeredsilicate,Horch,R.A.;Golden,T.D.;D’Souza,N.A.;Riester,L.Chem.Mater.2002,14,3531-3538.Olphen,H.Van.ClayColloidChemistry.JonhWileyLomakina,S.;Camino,G.Macromol.Mater.Eng.2000279,1–9Alexandre,M.,Dubois,P.MaterialsScienceandEngineering,200028,1-63,,12,Materialsinnanoscale,Alexandre,M.,Dubois,P.MaterialsScienceandEngineering,2000281-63,,,,,HighAspectRatio,,,13,Advantages,Large-scaleimprovementinthemechanicalandphysicalpropertiesThermalstabilityAnticorrosiveprotectionpropertiesGas-barrierpropertiesFlameretardant,14,TheoryandLiteraturereviewPropertiesofbipolarplate,15,Carbonbipolarplate,Advantages--Lowcontactresistance--Highcorrosionresistance--HighestelectrochemicalpoweroutputDisadvantages--Expensivetomachine--Brittle--Thick,WilsonMahlon“Compositebipolarplateforelectrochemicalcells“WO00/25372,2000BisariaMukesh,“Injectionmoldableconductivearomaticthermoplasticliquidcrystallinepolymercompositions“WO00/44005,2000,16,Metalbipolarplate,Advantages--Highthermalconductivity--Recyclable--ConsistencyofproductDisadvantages--Needcoatingtoavoidcorrosionex.Ni,Ti,.etal.--Membranepoisoning--ationofinsulatingsurfaceoxide,R.Horung;G.Kappelt”BipolarplatematerialsdevelopmentusingFe-basedalloysforsolidpolymerfuelcells”JournalofPowerSources,Volume72,Issue1,pp.20-21,March1998D.P.Davies;P.l.Adcock,;M.Turpin;S.JRowen,”Stainlesssteelasabipolarplatematerialforsolidpolymerfuelcells”JournalofPowerSourcesVolume86,Issue1-2,p237-242,March2000,17,Compositebipolarplate,1999,BulkMoldingCompoundsInc.BMCIandQuantumCompositesco.preparedcompositebipolarplatecomposedofvinylesterresin,graphite70-90wtbytheBMCprocess.Indicatehighcarbonloading60wttopossesshighconductivity.2000,WilsonMahlonindicatecompositebipolarplatesarelightweight,anticorrosion,lowcostandcanbemoldedintoanyshapeandsize,whichmakesthemattractiveforPEMfuelcells.Besides,thegasflowchannelscanbemoldeddirectlyintotheplate,eliminatingtheneedforthecostlymachiningstep.,徐耀昇,鄭煜騰,鄭耀宗,”低溫燃料電池的研製與分析”,燃料電池論文集,經濟部能源委會,p101-108,1999WilsonMahlon“Compositebipolarplateforelectrochemicalcells“WO00/25372,2000,18,Compositebipolarplate,2004,DivayaChopraetal.preparedcompositebipolarplatescomposedofresin25wt,graphitefiber25wtandgraphitepowder55wtbycompressionmolding.Tableshowsthereductioninresistivityofaconductivitybipolarplateassurfaceisabradedsuchthatthethicknessisreduced.,DivayaChopraetal.,Post-moldingtreatmentofcurrentcollectorplatesforfuelcelltoimproveconductivity,US0191608,2004,,,19,Compositebipolarplate,2004,JianhuaHuangetal.preparedcompositebipolarplatescomposedofglassfiber10wt,PET/PVDFandgraphite66.568wtbywet-layprocess.Tableshowsflexuralstrengthwas60.2MPaandconductivitywas171S/cm,JianhuaHuangetal.,“Highconductivitythermoplasticcompositesforrapidproductionoffuelcellbipolarplates”,US0229993,2004,,20,Compositebipolarplate,2004,Chen-ChiM.Maetal.preparedcompositebipolarplatescomposedofvinylesterandgraphitebybulk-mouldingcompoundBMC.Theflexuralstrengthandconductivityincreaseswithincreaseingraphitesize.Thecorrosioncurrentsforplatesarealllessthan10−7Acm−2.Thicknessis3mm,,,,10cm,10cm,5cm,Hsu-ChiangKuan,Chen-ChiM.Ma,KeHongChen,Shih-MingChen,Preparation,electrical,mechanicalandthermalpropertiesofcompositebipolarplateforafuelcell,JournalofPowerSources13420047–17Chen-ChiM.Maetal.,“Preparationoffuelcellcompositebipolarplate”,US809356,2006.馬振基等人,”燃料電池的複合材料雙極板之製備方法”,I221039,2004,21,Compositebipolarplate,2005,XiaohongGaydenetal.preparedcompositebipolarplatesbyRollBondingprocess,thenmachinedgasflowchannelsonbipolarplates.,XiaohongGayden,Yen-LungCheng,DavidR.Sigler,“Bipolarplatefabricationbyrollbonding”,US0133575,2005,22,TheoryandLiteraturereviewPropertiesofmontmorillonitelayeredsilicateNanocomposites,23,PropertiesofmontmorillonitelayeredsilicateNanocomposites,2002,SuprakasSinhaRayetal.preparedintercalatedmontmorillonitetrimethyloctadecylammoniumcation/polylactidePLAnanocomposite.TableshowspropertycomparisonsofMMT/PLAnanocompositeandpurepolylactide.,SuprakasSinhaRay,KazunobuYamada,MasamiOkamoto,andKazueUeda,Polylactide-LayeredSilicateNanocompositeANovelBiodegradableMaterial,NANOLETTERS2002Vol.2,No.101093-1096,,,,24,PropertiesofmontmorillonitelayeredsilicateNanocomposites,2004,BiplabK.Kuilaetal.preparedintercalatedmontmorillonite/poly3-hexylthiopheneP3HTnanocomposite.Tableshowsmechanicalandthermalpropertiesimprovewithincreasemontmorillonitecnotent.Howeverconductivitydidn’tchangeapparentlyatlowmontmorilloniteweightfraction.,TableConductivityValuesS/cmofUndopedandI2-DopedP3HTandPNCs,TableSummaryofMechanicalPropertiesofPNCsMeasuredbyDMA,BiplabK.KuilaandArunK.Nandi,Physical,Mechanical,andConductivityPropertiesofPoly3-hexylthiophene-MontmorilloniteClayNanocompositesProducedbytheSolventCasting,Macromolecules2004,37,8577-8584,,,,,25,PatentSearchKeywordsFuelcellandbipolarplateBipolarplateandflowfieldBipolarplateandcurrentcollectorCompositebipolarplate,26,Patentsvs.Years,27,Patentsvs.Country,28,ResearchCapabilityofCompany,29,ResearchCapabilityofCompanyDetail,30,Citations,31,Additivesofcompositebipolarplate,32,Objectives,33,Objectives,AnovelpolymercompositebipolarplateforpolymerelectrolytefuelcellhasbeenpreparedsuccessfullybybulkmoldingcompoundBMCprocess.Thecompositebipolarplateiscomposedofvinylesterresin,conductivecarboncompoundandnanoclay.Theeffectoftheclaycontentandthebasalspacingoforganoclaysontheelectrical,physical,mechanical,thermalpropertiesandI-Vcurvesofthepolymercompositebipolarplatewereinvestigated,34,ExperimentalSection,,ThemodificationprocedureofNa-MMT,Na-MMT1.15meq,JeffamineD-series1.15mole,HCl1.15meqiv.,ProductD2000/MMT,Cationexchangereactiontemp.80℃;time3hr,,,,,H2O100ml,ProductD400/MMT,,purification,JeffamineD-series,n23POP-D230,Mw230n56POP-D400,Mw400n33POP-D2000,Mw2000,,,,ProductD230/MMT,BMCulationusedinthisstudy,phrpartsperhundredpartsofresin,basedonamountofVinylesterLowprofileagentStyrenemonomer,,,,,Graphitepowderadditives,,Thickening,CompressionMolding,,,BMCKneadermixing,ThermalPropertiesThermalconductivityThermalexpansionLOI,PhysicalPropertiesGasPermeabilityCorrosionConductivityPorosityDensity,,,CellPeranceI-VcurveI-Pcurve,,,,MechanicalPropertiesFlexuralImpact,,XRDTGA,Clay,ModifiedClay,Vinylester,,38,ResultsandDiscussion,39,Hotcompressiontemperatureanalyze,,Exo,Exothermic130150oC,40,DSCcurveofvinylesterresinat140℃DSCcurveofvinylesterresinat150℃,Isothermalat140oCCuringfor5mins.,Isothermalat150oCCuringfor3mins.,Hotcompressiontimeanalyze---DSC,,,Exo,Exo,,,41,Thickeningtimeanalyze,,Thickeningfor52-54hrs,viscosityincreasequickly--Theintervalisoptimalprocesstime.,,,,,,,,,,,42,Characterizationdspace,,,IntercalatingagentsMwdspace,,,,,43,,IntercalatingagentsMwdspaceWeightFraction,,,,,,,CharacterizationWeightFraction,44,CompositeBipolarPlate,CompositeBipolarPlateWithFlowField,SizesOfFlowField,1mm,,1mm,,45,Porosity,,PorosityMMT/D2000MMT,IntercalatingagentsMwPorosityAirinbipolarplateMixingdensity,,,,,,,,,,47,Gaspermeability,,IntercalatingagentsMwdspaceTortuosityofthediffusionpathwayofHeHePermaebility,,,,,,GaspermeabilityMMT/D2000MMT,IntercalatingagentsMwCTE&PorosityFreevolumeExpansionwillbecomesignificant,,,,,,,,,,,51,Thermalconductivity,,ThermalconductivityMMT/D2000MMT/D400MMT/D230MMT,IntercalatingagentsMwProsityAirinBPkair0.032W/mKThermalconductivity,,,,,,,,,,52,Flexuralstrength,,FlexuralstrengthMMT/D2000MMT/D400MMT/D230MMT,IntercalatingagentsMwdspaceStyrene-clayinteractionsStyrenedirectlycross-linkFlexuralstrength,,,,,,,,,,53,UnotchedIzodImpactstrength,,UnotchedIzodImpactstrengthMMT/D2000MMT/D400MMT/D230MMT,,IntercalatingagentsMwdspaceStyrene-clayinteractionsStyrenedirectlycross-linkImpactstrength,,,,,,,,54,Flameretardance,aNotAvailable,BipolarplatesallmeetUL-94V-0andLOI50,55,I-VI-PCurves,,O2,H2,,,Cellperancesareverysimilar,,Compositebipolarplate,56,Conclusions,57,Conclusions,TheconditionofpreparationofhighorderlybasalspacingdspacingPOP-D2000/MMT54>POP-D400/MMT17.7>POP-D230/MMT13.9POP-D2000/MMTPOP-D4000/MMTRelationshipbetweenWeightFractionw/waandIntercalationagentWeightFractionw/wPOP-D2000/MMT76/24>POP-D400/MMT30/70>POP-D230/MMT22/78aWeightFractionIntercalationagent/Na-MMTmeasurebyTGAfrom40800oC,>,58,Anovelcompositebipolarplatecomposedofvinylesterresin,graphiteandorganoclayshasbeensuccessfullypreparedbytheBMCprocessThickness40.5J/m,61,Conclusions,Thecompositebipolarplatealsoshowsgoodcorrosionresistancelessthan10−7Acm−2,obeyDOEtarget50TheI-VandI-Pcurvesofsinglecellreachto0.65A/cm2and0.16W/cm2,respectively,possessequivalentperancetonanoclay-freecompositebipolarplates,
展开阅读全文