大温差矿井降温系统的技术及经济性分析.pdf

返回 相似 举报
大温差矿井降温系统的技术及经济性分析.pdf_第1页
第1页 / 共104页
大温差矿井降温系统的技术及经济性分析.pdf_第2页
第2页 / 共104页
大温差矿井降温系统的技术及经济性分析.pdf_第3页
第3页 / 共104页
亲,该文档总共104页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述:
工程硕士专业学位论文 大温差矿井降温系统的技术及经济性分析 Technical and economic analysis of using large temperature difference cold water in mine cooling system 作 者陈 凡 导 师吴学慧 副教授 中国矿业大学 二○一九年五月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书) 。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD727 学校代码 10290 UDC 620 密 级 公开 中国矿业大学 工程硕士专业学位论文 大温差矿井降温系统的技术及经济性分析 Technical and economic analysis of using large temperature difference cold water in mine cooling system 作 者 陈 凡 导 师 吴学慧 申请学位 工程硕士专业学位 培养单位 力学与土木工程学院 学科专业 建筑与土木工程 研究方向 建筑节能技术 答辩委员会主席 高蓬辉 评 阅 人 黄建恩 余延顺 二○一九年五月 万方数据 致谢致谢 本文是在导师吴学慧副教授的悉心指导下完成的。从论文选题、研究思路、 制定研究计划到论文的撰写,每一环节都凝结着导师的智慧、心血和汗水。在论 文撰写过程中, 吴老师给予了耐心的指导和启发, 为学生指明了正确的研究方向。 在生活中,吴老师谦逊朴实、和蔼和亲,其高尚的师德风范也令我敬重不已。 感谢黄建恩老师、 高蓬辉老师、 丁志平院长、 魏京胜老师给予的关心和帮助。 感谢师兄武伟、孙晓鹏、钟益、戴行楠、常小涛、孙树欣在论文撰写中给予 的帮助,尤其是武伟师兄在学习上给我提供了许多帮助。感谢同学薛雨凝、郭大 鹏、 邱玉、 张梦、 胡小雪、 丁维婉在学习和生活中给予的帮助。 感谢师妹刘星言、 师弟王运韬、冯小强、符跃、滕飞宏在学习和生活中给予的关心。 深深感谢我的家人,感谢他们这么多年的无私奉献、信任和支持。 最后衷心感谢各位教授、老师在百忙之中对论文的评阅和指导。 万方数据 I 摘摘 要要 随着煤矿开采深度的增加,矿井高温热害问题越发的突出,需要对矿井进行 有效降温以保证高温作业环境中矿工们的安全和煤矿的高效生产, 采用空调系统 降温是有效的技术措施之一。 基于水泵能耗的逐年上升和冷水机组制冷能力的提 高,矿井降温系统中采用大温差冷水运行能有效减少系统的总能耗。 本文基于理论公式分析了矿井降温系统采用冷水大温差后冷水机组,水泵, 空冷器热工性能的变化情况, 结果表明冷水机组的热工性能基本不受冷水大温差 的影响; 水泵能耗主要与管径的大小和冷水供回水温差有关,应先根据经济比摩 阻选取适当管径再进行能耗的分析计算;分析空冷器热工性能时,根据热交换效 率系数通过计算机编程回归出了全热冷量的表达式, 结果表明空冷器冷量随着冷 水温差的增大而降低,空冷器能耗随着冷水温差的增大而增大,空冷器水阻力随 着冷水温差的增大而减小。 本文计算了大温差矿井降温系统各设备的初投资和能耗。初投资计算时,水 泵和冷水机组的初投资采用功率估算;空冷器的初投资采用面积估算;冷水系统 的初投资采用管径大小估算。能耗计算时,考虑了冷损对冷水机组能耗和冷却系 统能耗的影响。分析比较了各种经济性评价的方法,引入系统制冷系数,根据所 计算的能耗和初投资建立了大温差矿井降温系统经济性的数学模型。 采用最优化理论求解大温差矿井降温的最佳温差。 分析总能耗和总投资的变 化时,引入能耗变化系数和初投资变化系数,根据各主要设备的计算结果发现, 冷水机组和冷却系统能耗和初投资的变化对总能耗和总投资的影响很小, 水泵和 空冷器能耗的变化是影响总能耗的主要因素;空冷器、水泵、冷水系统初投资的 变化是影响总投资的主要因素。 根据拟合出的总能耗和总投资的函数形式建立了 优化目标函数,并求解出了不同冷负荷和输冷距离下的最佳温差,发现工作面制 冷负荷和输冷距离与最佳温差间没有存在着明显的规律, 且输冷距离对最佳温差 几乎没影响。同时,根据本文的计算公式给出了求解最佳温差的计算机程序。 该论文有图 30 幅,表 22 个,参考文献 87 篇。 关键词关键词 矿井降温;大温差;能耗;经济性 万方数据 II Abstract With the increase of coal mining depth, the problem of high temperature heat damage in mines has become more and more prominent. it is necessary to effectively cool the mine to ensure the safety of the miners in the high temperature working environment and the efficient production of coal mines, cooling with an air conditioning system is one of the effective technical measures. Based on the increasing energy consumption of the pump and the improvement of the cooling capacity of the chiller, the use of large temperature difference cold water operation in the mine cooling system can effectively reduce the total energy consumption of the system. Based on the theoretical ula, this paper analyzes the changes in the thermal perance of chillers, pumps and air coolers after the mine cooling system adopts the cold water large temperature difference technology, the results show that the thermal perance of the chiller is basically not affected by the large temperature difference of cold water; The energy consumption of the pump is mainly related to the size of the pipe diameter and the temperature difference of the cold water, the appropriate pipe diameter should be selected according to the economic specific frictional resistance and then the energy consumption analysis and calculation should be carried out; When analyzing the thermal perance of the air cooler, according to the heat exchange efficiency coefficient, the expression of total hot cooling is fitted by computer programming regression, the results show that the cooling capacity of the air cooler decreases with the increase of the cold water temperature difference, the energy consumption of the air cooler increases as the temperature difference of the cold water increases, the water resistance of the air cooler decreases as the temperature difference of the cold water increases. This paper calculates the initial investment and energy consumption of each equipment in the large temperature difference mine cooling system. In the initial investment calculation, the initial investment of the pump and the chiller is estimated by the power; The initial investment of air coolers is estimated by area; the initial investment of the cold water system is estimated by the diameter of the pipe. In the calculation of energy consumption, the effect of cold loss on the energy consumption of the chiller and the energy consumption of the cooling system is considered. Analyze and compare various economic uation s, introduce the system refrigeration coefficient, and based on the calculated energy consumption and initial investment, a 万方数据 III mathematical model for the economics of the large temperature difference mine cooling system is established. Optimization theory is used to solve the optimal temperature difference of large temperature difference mine cooling. When analyzing the change of total energy consumption and total investment, the energy consumption change coefficient and the initial investment change coefficient are introduced. According to the calculation results of each major equipment, the energy consumption and initial investment changes of chillers and cooling systems have little impact on total energy consumption and total investment. changes in energy consumption of pumps and air coolers are the main factors affecting total energy consumption; the initial investment in air coolers, pumps and cold water systems is the main factor affecting the total investment. according to the total energy consumption and the total investment function, the optimization objective function is established, and the optimal temperature difference under different cooling load and cooling distance is solved. The cooling load and cooling distance of the working surface and the optimal temperature difference are found. There is no obvious law between them, and the cooling distance has little effect on the optimal temperature difference. At the same time, according to the calculation ula of this paper, the computer program for solving the optimal temperature difference is given. The paper has 30 pictures, 22 tables, and 87 references. Keywords mine cooling; large temperature difference; energy consumption; economy 万方数据 IV 目 录 摘摘 要要 ........................................................................................................................... I 目目 录录 ........................................................................................................................ IV 图清单图清单 ....................................................................................................................... VII 表清单表清单 ........................................................................................................................ IX 变量注释表变量注释表 ................................................................................................................ XI 1 绪论绪论 ........................................................................................................................... 1 1.1 概述.......................................................................................................................... 1 1.2 国内外研究现状...................................................................................................... 3 1.3 论文的研究内容及目的.......................................................................................... 7 1.4 本论文的技术路线.................................................................................................. 8 1.5 本章小结................................................................................................................. 8 2 冷水大温差对矿井降温系统的影响冷水大温差对矿井降温系统的影响 ..................................................................... 10 2.1 冷水机组的适用性............................................................................................... 11 2.2 水泵的适用性........................................................................................................ 14 2.3 空冷器的适用性................................................................................................... 21 2.4 本章小结................................................................................................................ 30 3 大温差矿井降温系统经济模型的建立大温差矿井降温系统经济模型的建立 .................................................................. 32 3.1 能耗和初投资的计算............................................................................................ 32 3.2 经济评价方法........................................................................................................ 46 3.3 本章小结................................................................................................................ 50 4 大温差矿井降温系统最佳温差的确定大温差矿井降温系统最佳温差的确定 .................................................................. 52 4.1 大温差矿井降温空调系统优化模型.................................................................... 52 4.2 求解过程................................................................................................................ 59 4.3 不同空冷器冷负荷和距离下的最佳温差............................................................ 61 4.4 本章小结................................................................................................................ 67 5 结论结论 .......................................................................................................................... 68 参考文献参考文献 ..................................................................................................................... 70 作者简历作者简历 ..................................................................................................................... 86 万方数据 V 学位论文原创性声明学位论文原创性声明 ................................................................................................. 87 学位论文数据集学位论文数据集 ......................................................................................................... 88 万方数据 VI Contents Abstract. I ContentsIV List of FiguresVII List of TablesIX List of VariablesXI 1 Introduction1 1.1 Introduction 1 1.2 Research status at home and abroad.3 1.3 The research content and purpose of the thesis7 1.4 The technical route of this paper.7 2 The influence of large temperature difference of cold water on mine cooling system.10 2.1 Applicability of chillers...11 2.2 Pump suitability14 2.3 Air cooler applicability.21 3 The establishment of an economic model for large temperature difference mine cooling system.32 3.1 Calculation of Energy consumption and initial investment...............................32 3.2 Economic uation ...46 4 Optimal temperature when using large temperature difference of cold water in mine cooling system....52 4.1 Optimization model establish52 4.2 Solving process.59 4.3 Optimal temperature difference at different cold loads and different distances61 5 Conclusions...68 References...70 Author’s Resume86 Declaration of Thesis Originality...87 Thesis Data Collection88 万方数据 VII 图清单图清单 图序号 图名称 页码 图 1-1 2016 年一次能源消费构成 2 Figure 1-1 The composition of primary energy consumption in 2016 2 图 1-2 冷水系统能耗百分比变化趋势 2 Figure 1-2 Percentage change in energy consumption of cold water systems 2 图 1-3 本论文技术路线图 8 Figure 1-3 The technical roadmap of this paper 8 图 2-1 矿井降温的系统原理图 10 Figure 2-1 System schematic diagram of mine cooling 10 图 2-2 不同冷水供回水温度下的制冷剂蒸发温度变化图 11 Figure 2-2 Diagram of refrigerant evaporation temperature change at different cold water temperatures. 11 图 2-3 不同冷水供回水温度下的冷水机组制冷效率 13 Figure 2-3 Refrigeration efficiency of chillers at different cold water temperatures. 13 图 2-4 不同冷水供回水温度下冷水机组的制冷量和冷凝热 14 Figure 2-4 Cooling capacity and condensation heat of the chiller at different cold water temperatures. 14 图 2-5 不同冷水供水温度下的单位比摩阻 18 Figure 2-5 The unit specific frictional resistance at different cold water temperatures. 18 图 2-6 管径改变时不同冷水供回水温差下的单位比摩阻 19 Figure 2-6 When the pipe diameter changes, the unit specific frictional resistance at different cold water temperatures. 19 图 2-7 不同冷水供水温度下的局部阻力损失 21 Figure 2-7 Local resistance loss at different cold water temperatures. 21 图 2-8 计算机求解空冷器冷量的框图 25 Figure 2-8 A block diagram of the computers solution to the cooling capacity of the air cooler. 25 图 2-9 残差分析图 27 Figure 2-9 Residual Case Order Plot 27 图 2-10 不同冷水供回水温度下的全热冷量相对值变化图 28 Figure 2-10 A graph showing the relative value of total heat capacity at different cold water temperatures. 28 图 2-11 不同冷水供回水温度下的迎面风速相对值变化图 29 Figure 2-11 The change in relative value of oncoming wind speed at different cold water temperatures. 29 图 2-12 不同冷水供回水温度下的水阻力相对值变化图 30 Figure 2-12 A graph showing the relative change in water resistance at different cold water temperatures. 30 图 3-1 隔热管道横断面 33 万方数据 VIII Figure 3-1 Insulated pipe cross section 33 图 3-2 冷水机组冷量 36 Figure 3-2 Cold water unit cooling capacity map. 36 图 3-3 冷却系统能耗变化图 38 Figure 3-3 Cooling system energy consumption change chart 38 图 3-4 冷却系统能耗曲线拟合图 39 Figure 3-4 cooling system energy consumption curve fitting map. 39 图 3-5 计算机求解扬程程序框图 41 Figure 3-5 A block diagram of a computer program to solve the pump head 41 图 3-6 不同冷水供水温差下冷水泵流量和扬程关系图 42 Figure 3-6 Diagram of flow and head relationship of chilled water pumps at different cold water temperatures. 42 图 3-7 不同制冷负荷下空冷器的技术参数拟合图 44 Figure 3-7 Fitting map of technical parameters of air coolers under different cooling loads. 44 图 3-8 每排散热面积随冷水温度变化的曲线图 45 Figure 3-8 A graph of the heat dissipation area as a function of cold water temperature. 45 图 4-1 系统总能耗变化图 53 Figure 4-1 The total energy consumption change graph of the system. 53 图 4-2 系统制冷系数变化图 54 Figure 4-2 System refrigeration coefficient change chart 54 图 4-3 系统总能耗拟合图 55 Figure 4-3 A fitted map of the total energy consumption of the system. 55 图 4-4 系统总投资变化图 56 Figure 4-4 System total investment change chart. 56 图 4-5 系统总投资拟合图 57 Figure 4-5 A fitted map of the total investment of the system. 57 图 4-6 空冷器拟合曲线的常数项 62 Figure 4-6 The constant term of the air cooler fittin
展开阅读全文

资源标签

最新标签

长按识别或保存二维码,关注学链未来公众号

copyright@ 2019-2020“矿业文库”网

矿业文库合伙人QQ群 30735420