高效藻类塘系统处理农村污水脱氮除磷及其强化研究.pdf

返回 相似 举报
高效藻类塘系统处理农村污水脱氮除磷及其强化研究.pdf_第1页
第1页 / 共5页
高效藻类塘系统处理农村污水脱氮除磷及其强化研究.pdf_第2页
第2页 / 共5页
高效藻类塘系统处理农村污水脱氮除磷及其强化研究.pdf_第3页
第3页 / 共5页
高效藻类塘系统处理农村污水脱氮除磷及其强化研究.pdf_第4页
第4页 / 共5页
高效藻类塘系统处理农村污水脱氮除磷及其强化研究.pdf_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述:
水 污 染 治 理 不同回流率下的循环流化床脱氮性能研究 * 崔玉波 大连民族学院环境工程系, 辽宁 大连 116600 刘洪波 天津大学环境科学与工程学院, 天津 300072 白春学 大连开发区排水管理有限公司第一污水处理厂, 辽宁 大连 116600 摘要 一种新型的生物脱氮工艺 生物循环流化床 CFBBR 用于脱氮和除碳。 系统由缺氧床 升流床 和好氧床 降流床 及其连接装置构成。 进水由缺氧床底部进入, 同来自好氧床的硝化液一起, 在缺氧床内完成脱氮和除碳。 研 究了不同进水负荷, 硝化液回流率 200~ 600下的系统性能。 从技术和经济角度考虑, 400硝化液回流率为最佳。 最短水力停留时间2. 5 h 缺氧床0. 8 h, 好氧床1. 7 h 和 400硝化液回流率下, TN 和 CODCr去除率和出水浓度分别为 88、95和3. 5 mg L、16 mg L。 系统VSS 低于1 g L, 硝化率和反硝化率分别为0. 026~ 0 . 1 g gd 和 0 . 016~ 0. 074g gd 。 关键词 生物循环流化床 硝化 反硝化 回流率 *教育部科学技术研究重点项目 205189 0 引言 将硝化液从好氧区回流到厌氧区, 利用污水中的 有机物作为反硝化碳源的生物脱氮工艺已于 20世纪 70 年 代开 发出 来 [ 1] 。 随 后又 出 现了 A2O、UCT 、 Phoredox 等生物脱氮除磷技术。这些工艺存在脱氮 除磷所需碳源不足问题。Henze 等建议利用水解的 初沉污泥作为生物硝化-反硝化工艺中反硝化的外加 碳源, 可以有效完成同步脱氮除磷 [ 2] 。但上述工艺的 缺点是总停留时间过长, 且工艺稳定性不足。本研究 目的是利用集悬浮生长工艺和固定膜工艺于一体的 流化床技术,并突破局限于污水处理中利用传统流化 提高处理效率的观念, 将传统流化床与输送床相结 合,达到同时去除污水中碳、氮、磷的目的 [ 3] , 并有效 地缩短总水力停留时间。本文介绍反应器的硝化 、 反 硝化脱氮性能。 1 试验装置与方法 1. 1 试验装置 生物循环流化床结构示意图如图 1 所示。系统 主要由缺氧床和好氧床组成, 根据载体的运动方向又 分别称为升流床和降流床 [ 4] 。缺氧床上部为液固分 离器, 好氧床上部为沉淀区 ,两者之间的水压力平衡 可以保持缺氧床和好氧床之间水流的动态平衡。 为减小因回流带来的能耗 , 结合床体的功能, 将 缺氧床分为 2 部分 下部为大直径床体, 上部为小直 径床体。具体规模为 下部直径3. 8 cm , 高1. 03 m, 容 图 1 生物循环流化床结构示意图 积1. 2 L; 上部直径1. 905 cm , 高1. 52 m , 容积0. 43 L。 好氧床直径5. 08 cm,高1. 62 m, 容积3. 3 L 。 上、下 2 个 斜管将缺氧床和好氧床连通为 1 个整体。 在缺氧床底部有 2 个液体布水器 ,分别称为主水 流布水器和辅助水流布水器。主水流布水器由 3 根 不锈钢管组成, 占床体横截面积的 19, 高度0. 16 m 。 辅助水流布水器为 1 个多孔圆盘, 开孔率为 25, 上 铺60 目过滤网。进水、缺氧床回流水和好氧床回流 水在缺氧床底部的水流分布器中通过调节阀进行重 新分配。当缺氧床中的表层液速超过某一临界值 ,液 体协同载体同向升流 ,经由上部输送床传送到液固分 离器 ,在此发生液固分离。上清液部分回流 ,其余部 分同沉淀的载体在平衡水压作用下经上斜管自动流 7 环 境 工 程 2007年 12 月第 25卷第 6 期 入好氧床 。好氧床处于传统流化状态, 载体不断下行 通过下斜管补给缺氧床, 以形成载体的稳定循环流 动。研究系统的脱氮性能期间保持 2 床载体的相对 独立 ,即保持下连接管无固液流动 。 1. 2 试验材料 选择火山岩颗粒作为生物膜载体 。火山岩颗粒 质硬 、多孔、比表面积大。具体参数如下 堆积密度 1 000 kg m 3 ,表 观 密 度 1 720 kg m 3 ,真 密 度 2 560 kg m 3 ,总孔隙度 61,直径 0. 3 ~ 1. 0 mm ,平均 0. 67 mm ,填充量2. 53 kg 。 污水用NaCH3COO、 NH4Cl 、 KH2PO4人工配制。投 加 微 量 元 素 NiCl 6H2O 0. 3mg L ; CoCl2 6H2O 0. 3mg L ; CuCl2H2O 0. 8 mg L ; ZnCl20 . 5mg L ; MnCl2 4H2O 5 mg L ;FeCl3 6H2O 3 mg L ; NH46Mo7O244H2O 0. 8 mg L ; H3BO30. 5 mg L ; MgSO47H2O 140 mg L; CaCl2 H2O 60 mg L 。 1. 3 试验方案及运行参数 系统稳定运行后, 运行工况见表 1, 温度为 25 ~ 28 ℃。 表 1 进水指标及系统运行工况一览表 进水量 Lh- 1 回流 率 CODCr mgL- 1 NH 4-N mgL- 1 PO3- 4 -P mgL- 1 HRT h 缺氧床 好氧床总时间 0 . 520024727 . 45 . 023. 266. 69 . 9 1200256255 . 34 30029627 . 45. 41. 633. 34 . 9 40029825 . 85 . 28 1 . 520029226 . 2274. 83 1 . 5400280275 . 121. 092. 23 . 3 60027227 . 85. 5 220033028 . 95 . 41 40032737 . 35 . 480. 821 . 652 . 5 6003827 . 85 . 35 1. 4 试验启动 取某污水厂剩余污泥1 L进行接种。剩余污泥 MLSS 为3 420 mg L ,MLVSS 为2 704 mg L 。 原水分别在 缺氧床和好氧床内进行内部循环。24 h后, 继续投加 0. 5 L剩余污泥, 并开始进水 ,进水水量为0. 5 L h。 水 力负荷率 HLR 2. 44 m 3 m3 d , 好氧床出水回流率 为2 倍的进水流量,水温 25~ 28 ℃ [ 5] 。 从系统启动第 15 天开始 ,缺氧床和好氧床出水 CODCr开始明显下降 ,第 20 天以后 ,保持基本稳定 ,缺 氧床出水平均82 mg L,好氧床出水平均25 mg L 。 表明 系统启动20 d后 ,载体可以形成稳定生物膜, 并获得 稳定的有机物去除。用此期间载体生物膜的 VSS 表 示生物量, 则缺氧床 、好氧床中载体的平均生物量分 别为12. 3 mg g和9. 71 mg g , 转换成相应的容积生物 量分别为4 521 mg L和4 207 mg L 。 从第 24 天前 的数据看 , 进水 NH 4- N 为 7 ~ 15 mg L, 系 统 出 水 NH 4- N 9 环 境 工 程 2007年 12 月第 25卷第 6 期 400 时 ,随回流率增加, TN 去除率并没有增加。因 此,从经济和技术的角度, 该系统采用 400的回流 率比较合适。 根据图3 曲线的变化趋势, 不同进水量下, 出水 NO - 3- N 浓度受硝化液回流率影响, 呈现出一定的变 化特点。回流率 200~ 400, 出水 NO - 3- N 浓度下 降斜率较大 ,而回流率400~ 600, 出水NO - 3- N 浓 度基本相同 , 并维持较低的值 95。CODCr ρ TN 为 9 ~ 12,略高于上述比例 , 因此不存在碳源短缺问题。但 源于本系统的高效性 ,C 和N 都得以有效去除 。 4 结论 1 系统用传统活性污泥处理厂剩余污泥接种, 一个半月内启动成功 ,建立起系统的脱氮性能 。 2 不同进水负荷下 ,硝化液回流率对系统的脱 氮效率具有一定影响 ,从经济和技术角度综合考虑, 400 的回流率为最佳 。但回流率对 CODCr的去除效 率影响不大 。 3 总水力停留时间 2. 5 h 内 , 系统充分完成了 脱氮和除碳 ,可以获得良好的出水水质。 4 系统生物量不高 ,但较薄的生物膜维持了较 高的活性, 因此系统效率较高 。 参考文献 [ 1] Shimizu T ,Tambo N , Kudo K, etc. An anaerobic fluidized pellet bed bioreactor process for simultaneous removal of organic, nitrogenous and phosphorus substances. Wat. Res. , 1994, 28 9 1943 -1952. [ 2] Henze M, Harremoes P.Chemical -biological nutrient removal - the HYPRO concept Hahn H H and Klute R.Chemical Water and Wasterwater Treatment. Berlin Springer, 1990 499 -510. [ 3] 崔玉波, Nakhla G, Zhu J. 新型循环流化床的脱氮除磷机理. 中 国给排水, 2005, 21 1 93-95. [ 4] Zhu J, Zheng Y,Dimitre G K, etc .Bassi. gas - liquid -solid circulating fluidized beds and their potential applications to bioreactor engineering . Can. J. Chem. Eng. , 2000, 78 82 -94. [ 5] 崔玉波, Nakhla G , Zhu J. 新型循环流化床硝化 -反硝化启动试验 研究. 环境污染治理技术与设备, 2005,10 37 -40. [ 6] Nutt S G, Melcer H, Pries J H. Two-stage biological fluidized bed treatment of coke plant wastewater for nitrogen control. Journal WPCF, 1984,56 7 851 -857. [ 7] Cooper P F, Williams S C.High -rate nitrification in a biological fluidized bed. Water Sci. Tech. , 1990, 22 1 2 431 -442. [ 8] GreenM K, Hardy P J. The development of a high -rate nitrification fluidized bed process. Wat . Pollut. Control, 1985,84 1 44 -50. [ 9] McCarty L , Beck L, Amant P S. Biological denitrification of wastewater by addition of organic materials Purdue University . Proceeding of the 24th Industrial Waste Conference. 1969 1271. [ 10] Shimizu T, Furuki T , Wakai T , etc.Metabolic characteristics of denitrification by Paracoccus denitrificans. J Ferm. Technol. , 1972, 56 20-213. [ 11] Shimizu T , Sakamoto Y, Wakai T , etc. Kinetic study of denitrification by Paracoccus denitrificans. J Ferm. Technol. , 1972, 56 20 -213. [ 12 ] Verstraete W, van Vaerenbergh E. Aerobic activated sludge Schonborn, W. . Biotechnology. Ger many VCH,Weinheim, 1986 43 -112. 作者通讯处 崔玉波 116600 辽宁省大连市开发区 大连民族大 学环境工程系 E -mail cybdlnu. edu. cn 2007- 05-14 收稿 10 环 境 工 程 2007年 12 月第 25卷第 6 期 NOVEL CIRCULATING FLUIDIZED BED BIOREACTOR FOR NITROGEN REMOVAL UNDER DIFFERENT NITRIFIED LIQUID RECIRCULATION RATES Cui Yubo Liu Hongbo Bai Chunxue7 Abstract A new biological nitrogen removal process The circulating fluidized bed bioreactor CFBBR is developed for simultaneous removal of nitrogen and organic matter. This system is composed of anaerobic bed, aerobic bed and connecting device. Influent and nitrifiedliquid from aerobic bed enter anaerobic bed from the bottom of the anaerobic bed, completing the removal of nitrogen and organic matter.The system perance under the conditions of different inflow loadings and nitrified liquid recirculation rates ranging from 200 to 600 was examined. From technical andeconomic point of view, the optimum nitrifiedliquid recycle rate is 400. With a shortest total retention time of 2. 5 h 0. 8 h in the anaerobic bed and 1. 7 h in the aerobic bedand a nitrified liquid recirculation rate of 400based on the influent flow rate, the average removal efficiencies and effluent concentrations of total nitrogen and soluble CODCrare found to be 88, 95 and 3. 5 mg L, 16 mg L, respectively. The VSS concentration, nitrification rate and denitrification rate in the system are less than 1 g L, 0. 026 -0. 1 g gdand 0. 016~ 0. 074 g gdrespectively . Keywords circulating fluidized bed bioreactor, nitrification, denitrification and recirculation rate RESEARCH ON DESIGN OF MULTISTAGE A O STEP FEED BIOLOGICAL NITROGEN REMOVAL PROCESSGao Junfa Wang Li Guan Jiang et al 11 Abstract This paper reviews the principle and characteristics of step-feed multistage A O biological nitrogen removal process, meanwhile, consulted with the current status of research in abroad and the project application examples, some important factors regarding the operation and design of the process are discussed. The step -feed multistage A O biological nitrogen removal process does not apply internal mixed liquid return, the more reactors, the higher nitrogen removal rate, but the design and operation of the processwill be complex aswell. The quantities of reactor in project application are usually 2~ 4. The volume ratio of the anoxic section to the oxic section is 1∶ 1. 5. As for three -step-feed multistage A O biological nitrogen removal process, when the nitrogen removal at the rate of 78, sludge return only at the rate of 50. Keywords step-feed, multistage A O process and biological nitrogen removal TREATMENT OF FLUOBENZENE WASTEWATER BY PHYSICOCHEMICAL S Li Guoping Qiu Yang Xia Mingfang et al 14 Abstract It was studied that the process conditions of treating fluobenzene wastewater with acidification, extraction, inorganic fluoride removal and electrocatalysis. At the suitable conditions, the removal rates of CODCr, phenol, F - and petroleum are over 99. 2, 99. 99, 99. 9, 99. 5, the effluent inds such as CODCr, phenol, F -, petroleum and TOCwere lower than the limiting value of primary standard of the “Integrated Wastewater Discharge Standard” GB8978 -1996. At the same time, phenol in the wastewater can be recovered and reused. Keywords fluobenzene, extraction, activated carbon particle swarm, electrocatalysis, wastewater and resource disposal STUDY ON HYDRAULIC FLOW PATTERN OF EGSBGuo Suhong Ni Wen Xing Yi et al 17 Abstract High concentrated organic wastewater istreated by EGSB, the volumetric loading rate OLR of reactor is up to 46 kg m3d; the CODCrremoval rate of the reactor is over 90. Meanwhile, LiCl is used as tracer to examined expandability and hydraulic flow pattern of reactor by pulse -type tracing . Research indicates that the hydraulic loading is the primary parameter affecting the expandability of EGSB, and suitable expansion rate of EGSB is 15~ 19. Keywords EGSB, expandability and hydraulic flow pattern ANAEROBICACIDIFICATION -AEROBICANDDOUBLEPHOTOSYNTHETICBACTERIA FLUIDIZED BEDS TO TREAT HIGH CONCENTRATION ORGANIC WASTEWATER Kong Xiuqin Liang Ruizhen 20 Abstract The anaerobic acidification -aerobic photosynthetic bacteria fluidized beds are adopted to treat the ferment wastewater of plants pressing in lab scale. The first photosynthetic bacteria fluidized bed is backfilledwith light carbon residue with porous, the second one is backfilled with activated carbon, mechanical agitation and mechanical agitation-air agitation are used, stable operation for 40 d. The result shows that the CODCrwill be decreased from 80 000~ 120 000 mg L to 63 000~ 95 000 mg L during acidifying the wastewater for 12 h, after diluted to 8 000 ~ 12 000 mg L by domestic sewage entering into fluidized bed reactors and then staying for 48 h under anaerobic in the daytime and microaerobic at night, the CODCrdecreased to 295 . 8~ 420 mg L, CODCrremoval rate is up to 95. 8 so the removal rate of TN is 71. 3. Keywords photosynthetic bacteria, ferment wastewater and fluidized bed reactor COAGULATION -PYROLYSIS -BIOCHEMICALPROCESSFORTHETREATMENTOF METHOMYL WASTEWATERZhu Lehui Yang Tao 23 Abstract It is possible to use coagulation -pyrolysis-oxidization process as pretreatment, and use hydrolysis acidification -BIOFOR to treat methomylwastewater. The experiment proves that the CODCrremoval rate of wastewater can be up to 89. 8, and biodegradability can be also improved. The water quality of the final effluent in this system meets the first grade of“ Integrate Wastewater Discharge Standard” GB8978 -1996. Keywords methomyl, pyrolysis andwastewater treatment 2 ENVIRONMENTAL ENGINEERING Vol. 25, No. 6, Dec . , 2007
展开阅读全文

资源标签

最新标签

长按识别或保存二维码,关注学链未来公众号

copyright@ 2019-2020“矿业文库”网

矿业文库合伙人QQ群 30735420