资源描述:
超低品位铁矿开发综合利用技术研究项目通过鉴定2006-12-25 近日,由中国有色金属工业协会主持,对北京矿冶研究总院承担的超低品位铁矿开发综合利用技术研究项目的研究成果进行了会议鉴定。 鉴定委员会认为,项目针对我国资源特点,研究提出的“强化筛分大破碎比粗碎多段选择性干选拋废多碎少磨阶段磨矿阶段磁选”新工艺综合利用技术用于开发超低品位铁矿属国内外首例,其技术经济指标居世界领先水平铁精矿品位由原矿13%(磁性铁6%)提高到铁精矿含铁66%以上;在选矿比高达14的条件下,吨精矿生产成本低于200元。ZSG1642高效节能振动筛分给料机研制成功,强化筛分效果。提高生产能力20以上。设备运转正常,筛分效果显著,与传统重型板式给料机相比,设备投资低,节能效果好。合理配置破碎流程,增大粗碎破碎比。降低了中细碎的入碎粒级,采用较小型号的中细碎设备,降低了设备投资费用、基建费用和运转费用。粗碎PD90120新型外动颚大破碎比破碎机设备效果显著,该机首次针对铁矿山(处理量大、设备连续运转)应用的特点,在原有基础上调整机构参数,进行改进,用于大处理量的铁矿石粗碎获得成功。处理量大平均日生产能力达8000t,最高达9926t;破碎比大入料粒度-850㎜,出料粒度-150㎜;颚板磨损小、使用寿命长,设备运行一年来没有更换颚板;能耗低;设备长期24小时运转,运行平稳,安全可靠;操作维修方便,噪音低。多段选择性的抛废,第一、二段用磁滑轮干选,第三段选用新型细粒级干式磁选机CCXGY-814,进一步提高了入选品位,干选效果显著。经一年生产实践统计和用户提供的经济效益证明经济社会效益显著。成果已获得推广,在超低品位铁矿石的开发领域具有示范作用,应用前景广阔。 当今世界95以上的能源和80以上的工业原料都取自于矿产资源。我国目前95的一次资源、85以上的工业原料、70以上的农业生产资料都来自于矿产资源。矿业和以矿业产品为原料的加工业产值占全国工业产值的30,矿产品进出口贸易总额占全国进出口贸易总额的15。经过50余年的艰苦奋斗,我国已成为仅次于美国的世界第二矿业大国,其中煤炭、钢铁、水泥三大矿产量居世界第一位。矿石开采量每年50亿吨,矿业总产值4000亿元,全国共有矿山企业24万余家,矿兴城市300余座,矿山职工2000余万人。陕西省能源、金属、非金属矿产企业3000余个,其中大中型企业238个,从业人数100余万人,全省规模以上矿山企业实现工业产值150余亿元,占全省规模以上企业工业总产值的14.4,因此可以自豪地说我国矿业已形成了能源和原料矿产品的自供应体系,它作为基础材料和基础能源,为我国50年来的经济建设做出了巨大的贡献。 什么叫取样什么叫试样如何确定试样的最小重量 取样就是用一定的方法从大批物料中取出少量有代表性物料的过程。所取出的这部分物料叫做试样(如为若干份之和则叫平均试样)。 为了保证试样的代表性,当然取出的试样愈多愈好。但这样的结果是不经济的,也没有必要。在实际工作中,总是确定一个有代表性的最小试样重量。影响最小试样重量的因素很多,主要有物料的最大块度,矿物嵌布特性,物料中有价成分的含量,各矿物组成密度的差异以及允许的误差等等。目前用以下经验公式来确定试样的最小重量 Q Kd2,公斤 式中 Q 为了保证试样代表性所必须的最小重量,公斤; d 试样中最大矿块(粒)的粒度,毫米; K 与矿石性质有关的系数,除贵金属外,一般在0.02-0.5之间,最常用的为0.1-0.2。 如果取样方法正确,取样制度合理,则按公式计算的试样最小重量,是能够代表整个原物料性质的。供化学分析用的试样量一般为几克到1公斤,供选矿试验用的试样量需要数公斤到数吨。 金属矿产的选矿工艺 1)矿石破碎;(2)磨矿工艺;(3)选别技术;(4)烧结球团技术; 锰 机械选(包括选矿、筛分、重选、强磁选和浮选),以及火法副集,化学选矿法等。 铬 采用跳钛机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别,也用水力分选别过摇床中矿。 钛钒磁铁矿 是在对它经一段磨矿,一粗、一精、一扫的磁选流程磁选出磁铁矿精矿之后的磁尾进行。 铜 浮选、磁选、重选等方法或湿法冶炼等。 铅锌 一般用磁-浮、重-浮、重-磁-浮等联合选矿方法。 铝 一般采用手选。 镍 (1)浮选;(2)采用破碎、筛分等工序预先除去分化程度弱,含镍低的大块基岩。 钴 一般采用浮选。 钨 按矿石类型钨选矿分为黑钨和白钨。选矿方法有手选、重选、浮选、磁选、和电选等方法。 锡 选矿方法为重力选矿、浮选工艺。 钼 主要是浮选法。 汞 有手选、重选和浮选,其中以浮选应用广泛也最有效。 锑 主要有手选、重选、浮选等方法。 铂族 (1)合理球磨,采用合适的旋流器分级; (2)回收率; 金金在矿石中含量极低,提取黄金需要将矿石破碎和磨细并采用选矿方法使金分离出来。主要是重选和浮选。 银 (1)浮选法; (2)单一浮选法和浮-重选法、浮选氰化法的联合流程,其中以浮选最为重要。 铌钽铍锂 手选法、浮选法、化学或化学-浮选联合法、热烈选法、放射性选法、粒浮选矿法。 锶 重石社天青石选矿中最常用的方法,最普遍的结构流程为以跳汰-摇床为主体的流程。 稀土金属 一般采用磁选、浮选得到精矿含稀土氧化物约60。 钒钛磁铁矿选矿方法 钒钛磁铁矿这是我国钛铁矿岩矿床的主要矿石类型。根据攀枝花矿山公司的选矿研究和生产实践,其钛铁矿精矿的选矿是在对钒钛磁铁矿石经一段磨矿(-0.4mm),一粗、一精、一扫的磁选流程磁选出磁铁矿精矿(Fe51%~52%,TiO212.6%~13.4%,V2O50.5%~0.6%)之后的磁尾(矿)进行。磁尾矿(含TiO27%~9%)中粒状和部分片晶状钛铁矿精矿的选矿方法工艺流程如图3.5.6所示。选矿厂选钛车间设计指标见表3.5.7。 钒钛磁铁矿石以Fe与Ti形式致密共生赋存在钛磁铁矿中的TiO2(约占攀西地区TiO2总储量的53%),由于赋存状态、粒度,以及在高炉冶炼绝大部分没有被还原而以TiO2形式进入炉渣的化学反应特性等因素,目前还难以用机械选矿方法回收利用。但是,随着攀枝花钢铁研究所和北京钢铁研究总院对钛磁铁矿的铁、钛、钒综合回收而对冶炼工艺和技术的改进与提高,现已基本上打通流程,取得了积极的成果。此外,还开展了还原磨选制取铁粉和综合回收钒钛的试验。其流程是 钒钛铁精矿 铁粉 燧道窑碳还原 V2O5 破碎磨矿 富钒钛料湿法分离 重磁选分离- TiO2 钛铁矿、金红石砂矿这是我国目前生产钛铁矿和金红石精矿的主要矿石类型。根据海南中兴精细陶瓷微粉总厂和海南省冶金工业总公司所属沙老、南港、清澜铺前、乌场(保定)4个国有钛(砂)矿的生产实践,其钛铁矿、金红石、锆石、独居石砂矿的采矿、选矿工艺流程和各种精矿的技术指标如图3.5.10。采矿的回采率>95%,贫化率<5%,选矿的总回收率达80~85%。 为了提高资源的利用率和经济效益,减少中矿、尾矿的积压和对环境的污染,广州有色金属研究院曾专题研究了“海南岛海滨砂矿难选中矿钛元素赋存状态及综合回收途径”(第三届全国矿产资源综合利用学术会议论文集,1990年)。该研究、试验表明①钛元素主要赋存在以Ti4与Fe2呈类质同象置换而形成的钛-铁矿系列中;其中钛铁矿(含TiO252%~54%)和富铁钛铁矿(含TiO246%)所占的比例达66.2%,其次是富钛钛铁矿(含TiO256%~58%)占19.2%,钛赤铁矿(含TiO210.7%~19.5%)占14.6%。此外,钛元素还少量地赋存在金红石、锐钛矿、白钛石和榍石中。②难选中矿属钛铁矿、锆石、独居石、金红石、锐钛矿等的混合矿物,矿物粒度0.2~0.08mm(属可选粒度);采用二碘甲烷介质作“沉浮”选矿,比重<3.3的非有用矿物的上浮排除率达19.76%,比重>3.3的有用重矿物下沉产率达73.5%。③在下沉的重矿物中,除主收钛铁矿外,可综合回收锆石、独居石、富钛钛铁矿和金红石;其有效的选矿流程有二其一是有用重矿物经电磁选场强6000Oe分选出占钛铁矿矿物比例88.1%的磁性产品(TiO243%),再经800℃、10min的氧化焙烧,最后经场强650 Oe弱磁选,在磁选产品中可获得TiO250~51%的钛铁矿精矿产品;其二是有用重矿物(钛铁矿粗精矿,含TiO243~46%)经电选(2.1kV,120r/min),在导体产品中可获得TiO2 51~53%的钛铁矿精矿产品。④在经场强800012000 Oe磁选的尾矿中,再采用浮选,可获得合格的独居石精矿;再对其经场强>20000 Oe磁选的非电磁性重矿物尾矿中,采用电选,可在非导体性产品中获得合格的锆石精矿,在导体性产品中获得合格的金红石精矿。 国内外钛矿资源的90%以上用于生产钛白,钛白的生产工艺流程,主要有先进的氯化法(图3.5.7)、盐酸法(图3.5.8)和传统的硫酸法 钼矿常规选矿方法简单介绍 钼矿的选矿方法主要是浮选法,回收的钼矿物是辉钼矿。有时为了提高钼精矿质量、去除杂质、将钼精矿再进行化学选矿外理。 辉钼矿晶体呈六方层状或板状结构,由沿层间范氏健的SMoS结构和层内极性共价键SMo形成的。层与层间的结合力很弱,而层内的共价键结合力甚强。所以辉钼矿极易沿结构层间解裂呈片状或板状产出,这是辉铜矿天然可浮性良好的原因。实践证明在合适的磨矿细度下,辉钼矿晶体解离发生在SMoS层间,亲水的SMo面占很小比例。但过磨时,SMo面的比例增加,可浮性下降,虽然此时加入一定量极性捕收剂如黄药类,有利于辉钼矿的回收,但过磨产生的新矿泥影响浮选效果。因此对辉钼矿的选别要避免和防止过磨,在生产上需要采用分段磨矿和多段选别流程,逐步达到单体解离,确保钼精矿的高回收率。 钼矿的破碎一般都采用三段一闭路流程,破碎最终产品粒度为12~15毫米。 磨矿通常用球磨机或棒磨-球磨流程。亨德森是唯一采用半自磨流程的。浮选采用优先浮选法。粗选产出钼粗精矿,粗扫选尾矿回收伴生矿物或丢弃。钼粗精矿采用两、三段再磨,四,五次精选获得最终钼精矿。 钼矿的浮选药剂以非极性油类作捕收剂,同时添加起泡剂。美国和加拿大用表面活性剂辛太克斯(Syntex)作油类乳化剂。根据矿石性质,用石灰作调整剂,水玻璃作脉石抑制剂,有时加氰化物或硫化物抑制其他重金属矿物。 为保证钼精矿质量,对钼精矿中所含的铜、铅、铁等重金属矿物和氧化钙以及炭质矿物需进一步进行分离 一般使用硫化钠或硫氢化钠,氰化物或铁氰化物制铜和铁;用重铬酸盐或诺克斯(Nokes)抑制铅。如果使用抑制剂,杂质含量还达不到质量标准,尚需辅以化学选矿处理次生硫化铜用氰化物浸出;黄铜矿用三氯化铁溶液浸出;方铅矿用盐酸和三氯化铁溶液浸出,均可达到标准含量。 含氧化钙的脉石易泥化,因此,对于含此类脉石的矿石切忌过磨。生产上往往添加水玻璃,六聚偏磷酸钠或有机胶作脉石抑制剂或分散剂;也可用活性炭加CMC(羧甲基纤维素)抑制碳酸盐脉石。最终可用盐酸或盐酸加三氯化铁溶液浸出处理。 含炭质矿物的分离,首先要查明炭质是属石墨类、沥青类或煤类。这些炭质矿物的可浮性与辉钼矿相近,但密度较小,一般可用重选法进行脱除;使用六聚偏磷酸钠和CMC抑炭浮钼;或加三氯化铁、水玻璃和六聚偏磷酸钠抑制炭质也有效;采用焙烧除去有机炭,也是办法之一。应该指出的是,所有这些炭质矿物的分离方法,目前还不能令人满意,还是一个尚未完全解决的问题。 脉石中SiO2(二氧化硅)含量太高,常常是影响钼精矿品位的原因。经查定SiO2含量随着钼精矿品位提高而下降,两者有相互消费的趋势。只要钼矿物达到单体解离细度,SiO2含量一般可降到标准以下。加活性炭吸附钼表面的油药,再加CMC抑制硅酸盐脉石,SiO2含量也可降到标准以下。 选矿与加工技术 (一)锰矿选矿 我国锰矿绝大多数属于贫矿,必须进行选矿处理。但由于多数锰矿石属细粒或微细粒嵌布,并有相当数量的高磷矿、高铁矿和共(伴)生有益金属,因此给选矿加工带来很大难度。目前,常用的锰矿选矿方法为机械选(包括洗矿、筛分、重选、强磁选和浮选),以及火法富集、化学选矿法等。 1.洗矿和筛分 洗矿是利用水力冲洗或附加机械擦洗使矿石与泥质分离。常用设备有洗矿筛、圆筒洗矿机和槽式洗矿机。 洗矿作业常与筛分伴随,如在振动筛上直接冲水清洗或将洗矿机获得的矿砂(净矿)送振动筛筛分。筛分可作为独立作业,分出不同粒度和品位的产品供给不同用途使用。 2.重选 目前重选只用于选别结构简单、嵌布粒度较粗的锰矿石,特别适用于密度较大的氧化锰矿石。常用方法有重介质选矿、跳汰选矿和摇床选矿。 目前我国处理氧化锰矿的工艺流程,一般是将矿石破碎至6~0mm或10~0mm,然后进行分组,粗级别的进行跳汰,细级别的送摇床选。设备多为哈兹式往复型跳汰机和6-S型摇床。 3.强磁选 锰矿物属弱磁性矿物〔比磁化系数X=1010-6~60010-6cm3/g〕,在磁场强度Ho=800~1600kA/m(10000~20000oe)的强磁场磁选机中可以得到回收,一般能提高锰品位4%~10%。 由于磁选的操作简单,易于控制,适应性强,可用于各种锰矿石选别,近年来已在锰矿选矿中占主导地位。各种新型的粗、中、细粒强磁机陆续研制成功。目前,国内锰矿应用最普遍的是中粒强磁选机,粗粒和细粒强磁选机也逐渐得到应用,微细粒强磁选机尚处于试验阶段。 4.重-磁选 目前国内已新建和改建成的重-磁选厂有福建连城,广西龙头、靖西和下雷等锰矿。如连城锰矿重-磁选厂,主要处理淋滤型氧化锰矿石,采用AM-30型跳汰机处理30~3mm的洗净矿,可获得含锰40%以上的优质锰精矿,再经手选除杂后,可作为电池锰粉原料。跳汰尾矿和小于3mm洗净矿径磨至小于1m后,用强磁选机选别,锰精矿品位要提高24%~25%,达到36%~40%。 5.强磁-浮选 目前采用强磁-浮选工艺仅有遵义锰矿。该矿是以碳酸锰矿为主的低锰、低磷、高铁锰矿。 据工业试验,磨矿流程采用棒磨-球磨机阶段磨矿,设备规模均为φ2100mm3000mm湿式磨矿机。强磁选采用shp-2000型强磁机,浮选机主要用CHF型充气式浮选机。经过多年生产的考验,性能良好,很适合于遵义锰选矿应用。强磁-浮选工艺流程试验成功并在生产中得到应用,标志着我国锰矿的深选已经向前迈进了一大步。 6.火法富集 锰矿石的火法富集,是处理高磷、高铁难选贫锰矿石一种分选方法,一般称为富锰渣法。其实质是利用锰、磷、铁的还原温度不同,在高炉或电炉中控制其温度进行选择性分离锰、磷、铁的一种高温分选方法。 我国采用火法富集已有近40年的历史,1959年湖南邵阳资江铁厂在9.4m3小高炉上进行试验,并获得初步结果。随后,1962年上海铁合金厂和石景山钢铁厂分别在高炉冶炼出富锰渣。1975年湖南玛瑙山锰矿高炉不但炼出富锰渣,同时还在炉底回收了铅、银和生铁(俗称半钢),为综合利用提供依据。进入80年代以后,富锰渣生产得到迅速发展,先后在湖南、湖北、广东、广西、江西、辽宁、吉林等地都发展了富锰渣生产。 火法富集工艺简单、生产稳定,能有效地将矿石中的铁、磷分离出去,而获得富锰、低铁、低磷富锰渣,这种富锰渣一般含Mn35%~45%,Mn/Fe 12~38,P/Mn<0.002,是一种优质锰系合金原料,同时也是一般天然富锰矿很难同时达到上述3个指标的人造富矿。因此,火法富集对于我国高磷高铁低锰难选矿而言,是很有前途的一种选矿方法。 7.化学选锰法 锰的化学选矿很多,我国进行了大量研究工作,其中试验较多,较有发展前途的是连二硫酸盐法、黑锰矿法和细菌浸锰法。目前尚未付诸工业生产。 (二)锰矿粉造块 造块方法包括烧结、球团和压球3种工艺。目前,我国造块多采用烧结法。只是在锰精矿或粉矿很细,-200目在80%以上又不允许产品中含残碳时,则采用球团或压团。 50年代初期,我国锰矿粉多采用烧结锅烧结和土法烧结。随着钢铁生产的发展,土法烧结不能适应要求,因而纷纷着手建设烧结机或其他高效的造块设备。1970年,我国第一台粉锰矿烧结机(18m2)在湘潭锰矿建成投产,1972年江西新余钢铁厂又建成2台24m2烧结机,1977年,我国第一台锰精矿球团设备80m2带式焙烧机在遵义锰矿建成投产。进入80年代,湘潭锰矿、八一锰矿、湘乡铁合金厂相继建成18~24m2烧结机多台,上海铁合金厂引进压球设备作为粉矿造块使用。 造块技术的发展,给锰系合金的冶炼带来更大的经济效益。以江西新余钢铁厂为例,增加入炉熟料比和用冷烧矿取代热烧结矿,可使高炉冶炼技术指标大为改善。 (三)锰矿石冶炼 锰矿石冶炼产品主要有高碳锰铁、中低碳锰铁、锰硅合金以及金属锰等,通称为锰质合金或锰系合金。 高碳锰铁。我国主要采用高炉生产。50年代尚未形成专门厂家生产高炉锰铁(高碳锰铁),而是一些钢铁厂自炼自销,生产量很小。从1958年后,湘潭锰矿先后建起6.5m3、33m3高炉专炼锰铁,60年代以后,新余、阳泉、马钢三厂、重钢四厂等转产高炉锰铁,进入80年代,高炉锰铁发展更快。高炉锰铁产量由1981年的20万t增至1995年40万t。 电炉生产的产品包括碳素锰铁、中低碳锰铁、锰硅合金、金属锰四类。我国电炉生产最早的是吉林铁合金厂,于1956年建成投产,最大电炉容量为12500kVA;60年代初,湖南、遵义、上海等铁合金厂相继建成投产,这些厂都可生产碳素锰铁、中低碳锰铁和锰硅合金;遵义铁合金厂还用电硅热法生产金属锰。据冶金工业部1995年全国铁合金主要技术经济指标记载,1994年全国15家重点铁合金厂中有11家生产锰系合金产品。这些重点铁合金厂经过不断发展、扩大,为满足钢铁工业生产作出了重要贡献。 80年代以来,地方中小型铁合金企业发展迅速。据资料统计,地方中小企业铁合金产量占全国比重由1980年的32.39%,上升到1989年的54.01%,到1996年已达69.85%,企业数已达1000家以上。这些中小企业大多数是采用1800kVA的小电炉,设备落后,产品质量比较差。 电炉锰铁与锰硅合金生产所用设备基本相同,都是采用矿热电炉,电炉变压器容量一般为1800~12500kVA。湖南、遵义铁合金厂分别从德国引进3000kVA和31500kVA锰硅电炉,现已投产。 我国电炉高碳锰铁的生产,一般多采用熔剂法生产工艺。锰硅合金的生产,一般都采用有渣法生产工艺。 中低碳锰铁的生产,主要有电炉法、吹氧法和摇包法3种。摇包法包括在摇包中直接生产中低碳锰铁和摇包-电炉法生产中低碳锰铁。摇包-电炉法工艺比较先进、生产稳定可*、技术经济效果好,目前上海、遵义等铁合金厂都采用此法。 金属锰生产方法有火法冶炼和湿法冶炼。火法冶炼金属锰,我国始于1959年,由遵义铁合金厂首次用电硅热法试制成功,一直独家生产至今。生产工艺采用三步法,第一步用锰矿石炼成富锰渣;第二步用富锰渣炼制高硅硅锰合金,第三步用富锰渣为原料,高硅硅锰作还原剂及石灰作熔剂,即电硅热法制成金属锰。湿法冶炼主要是电解法,常称电解金属锰。我国于1956年由上海901厂建成第一家电解锰生产厂,到90年代初已有大小电解金属锰厂50余家,年总生产能力达4万余t。生产工艺流程大致分硫酸锰溶液制备、电解、后处理3个生产工序。后处理是电解完成后包括产品纯化、水洗、烘干、剥离、包装等系列操作。最终获得合格电解金属锰产品,含Mn99.70%~99.95%。 金矿尾矿治理与利用 金矿尾矿粉尘遇风容易飞扬,遇水容易流失,长期堆放,不仅占用大量土地,同时尾矿粉尘对周围环境构成危害,本文就尾矿污染现状提出几种简易的治理方法。 一、金矿尾矿污染现状 招远市现有金矿尾矿库大小近百个,大多呈山谷形、山坡形和平地形,多数已被覆土造田,有的正在使用,还有一部分没有被覆土,也有的尽管压了一层薄土,易形成第二次粉尘危害,仍对周围环境造成影响。 由于金矿尾矿粒度细,并含有选矿药剂以及金属离子,一遇大风,特别是干季36月份,将尾矿刮得黄砂骤起、尘土飞扬,落入村庄、农田、果园,使其受到污染侵害,由此而产生的污染纠纷将直接影响社会的安定团结。 尾矿对环境污染大体通过三种途径一种是尾矿在风化过程中逸出某些有害气体,经大气传播而进行污染;另一种是极细的尾矿砂粒受风吹的作用(甚至可形成沙暴),使周围环境受到严重危害;三是遇到汛期,尾矿连同雨水流入农田、河流,使地下水造成危害。 综上所述,尾矿污染占用土地,损害景观,破坏土壤,危害生物,淤塞河道,污染大气。 二、尾矿污染控制方法 对尾矿治理与利用最为简单可行的几种方法为一是覆土造田。在土壤比较充足的地区可采用压10-20厘米土的方法而后进行种植,覆土造田,扩大耕地面积,这种方法适用于呈山谷形的尾矿库。多年来,这种方法已得到肯定。但也有因压的土层较薄,造成粉尘二次危害的。 二是利用有机废弃物,对金矿尾矿粉尘采取可降解性固化、封闭,选择适当种子和基质使植物迅速发芽、成长以达到植被利用目的。这种治理尾矿的方法,通过几年的实践,摸索出一些经验,尤其是在可降解固化废料选择、基质、种子选择以及种子发芽时间等做了多项实验,有些已获成功。它克服了占用大量土层、受尾矿形状所限治理不便等弊端。同时在沙漠治理等方面也大有可为。 三是利用尾矿开发建筑材料。金矿尾矿中某些硅砂、砂岩或脉石英可被利用。砖是最常见的建筑材料,用尾矿制砖也是很好的利用方法,掺加一定量的石灰制成砖坯,然后送入碳化室,通入CO2碳化成砖,不但增加砖的压强,减少取土毁地,而且经济效益也相当可观。尾矿还可以制造平板玻璃及各种保温、隔热、隔音材料。此外,从尾矿中提取有用金属技术也已被利用。 三、尾矿治理的几点建议 黄金生产过程中产生大量尾矿,因此要把握好几个问题。一是尾矿库选址必须合理,这是治理、利用尾矿库的基础。二是用完的尾矿库立即覆地造田。一般覆土厚度要在400600毫米以上,适用种植,使尾矿不再污染。三是种植能覆盖坝面的植物,如枝叶稠密、根茎发达、繁殖容易的植物,能保土固堤,达到彻底的治理效果。四是对金矿尾矿,制定严格的管理制度,谁污染谁治理,谁开垦谁利用,奖罚兑现,保证尾矿治理的顺利实施。 铅锌矿的浮选方法 铅锌是人类从铅锌矿石中提炼出来的较早的金属之一。铅锌广泛用于电气工业、机械工业、军事工业、冶金工业、化学工业、轻工业和医药业等领域。此外,铅金属在核工业、石油工业等部门也有较多的用途。在铅锌矿中铅工业矿物有11种,锌工业矿物有6种,以方铅矿、闪锌矿最为重要。方铅矿的化学式为PbS,晶体结构为等轴晶系,硫离子成立方最紧密堆积,铅离子充填在所有的八面体空隙中。新鲜的方铅矿表面具有疏水性,未氧化的方铅矿很易浮选,表面氧化后可浮性降低。黄药或黑药是方铅矿的典型的捕收剂,黄药在方铅矿表面发生化学吸附,白药和乙硫氮也是常用捕收剂,其中丁铵黑药对方铅矿有选择性捕收作用。重铬酸盐是方铅矿的有效抑制剂,但对被Cu2活化的方铅矿,其抑制效果下降。被重铬酸盐抑制过的方铅矿,很难活化,要用盐酸或在酸性介质中,用氯化钠处理后才能活化。氰化物不能抑制它的浮选,硫化钠对方铅矿的可浮性很敏感,过量硫离子的存在可抑制方铅矿的浮选;二氧化硫、亚硫酸及其盐类、石灰、硫酸锌或与其它药剂配合可以抑制方铅矿的浮选。 闪锌矿的化学式为ZnS,晶体结构为等轴晶系, Zn离子分布于晶胞之角顶及所有面的中心。S位于晶胞所分成的八个小立方体中的四个小立方体的中心。高锰酸钾浓度为4~610-5摩尔/升时对活化的闪锌矿有较强的抑制作用,浓度偏高时却使其良好浮游。其作用机理为高锰酸钾浓度低时与闪锌矿表面活化膜及表面晶格离子反应生成的金属羟基化合物起抑制作用并使黄药脱附,浓度高时则在矿物表面发生氧化还原反应生成大量元素硫。 氰化物可以强烈的抑制闪锌矿,此外硫酸锌、硫代硫酸盐等都可以抑制闪锌矿的浮选。 黄铁矿是地壳中分布最广的硫化物,形成于各种不同的地质条件下,与其他矿物共生。黄铁矿能在多种稳定场中存在是因为Fe2的电子构型,使它进入硫离子组成的八面体场中获得了较大的晶体场稳定能及附加吸附能。因此,黄铁矿可形成并稳定于各种不同的地质条件下。 除了黄铁矿的晶体结构、化学组成、表面构造等因素对其可浮性有影响之外,许多研究也表明,黄铁矿的矿床成矿条件、矿石的形成特点、矿石的结构构造等因素也有影响。石透原对日本十三个不同矿床的黄铁矿的化学分析结果指出,各矿样的S/Fe比值大都在1.93~2.06范围内波动,S/Fe比愈接近理论值2,则黄铁矿可浮性愈好。陈述文等对八种不同产地的黄铁矿的可浮性进行了研究,认为单纯用硫铁比来判断其可浮性有一定的局限性,黄铁矿的可浮性还与其半导体性质及化学组成有关。两者的关系为S/Fe比高的黄铁矿为N型半导体,其温差电动势为负值,可浮性差,易被Na2S、Ca2等离子抑制;S/Fe比接近理论值2者既可能是P型也可能是N型半导体,在酸性介质中可浮性好,在碱性介质中可浮性差;S/Fe比值低的黄铁矿为P型半导体,温差电动势大,在碱性介质中可浮性好,难以被Na2S、Ca2等抑制,但在酸性介质中可浮性差。 短链黄药是黄铁矿的传统捕收剂,其疏水产物为双黄药。在黄药作用下,黄铁矿在pH小于6的酸性介质中易浮,但pH为6~7间有不同研究表明其可浮性变差或更好浮。凌竞宏等研究则表明这一现象和矿样处理方式有关。在碱性条件下,黄铁矿可浮性随着pH值的升高而下降。 黄铁矿的活化剂一般使用硫酸,此外也可用Na2CO3或CO2来活化。作用机理为其一是降低溶液pH值,使黄铁矿表面Ca2、Fe2、Fe3等离子形成络合物或难溶盐从黄铁矿表面脱附而进入溶液,恢复黄铁矿的新鲜表面;其二是由于活化剂的存在使黄铁矿表面难以被氧化,从而被抑制的黄铁矿得以活化而上浮。当黄铁矿表面氧化较深时,可被Cu2活化。其机理为Cu2可取代黄铁矿晶格中的Fe2使表面生成含铜硫化膜从而增强对黄药的吸附作用;但当黄铁矿吸附捕收剂或受到石灰抑制较深时,则需在酸性介质中或经酸清洗后方可被CuSO4活化。 3.2铅锌浮选捕收剂 铅锌矿的常用捕收剂有 1、黄药类这类药剂包括黄药、黄药酯等。 2.硫氮类,如乙硫氮,其捕收能力较黄药强。它对方铅矿、黄铜矿的捕收能力强,对黄铁矿捕收能力校弱,选择性好,浮选速度较快,用途比黄药少。对硫化矿的粗粒这生体有较强的捕收比它用于铜铅硫比矿分选时,能够得到比黄药更好的分选效果。 3.黑药类 黑药是硫化矿的有效捕收剂,其捕收能力较黄药弱,同一金属离子的二烃基二硫代磷酸盐的溶解度积均较相应离子的黄原酸盐大。黑药有起泡性。 工业常用黑药有25号黑药、丁铵黑药、胺黑药、环烷黑药。其中丁铵黑药(二丁基二硫代磷酸铵)为白色粉末,易溶于水,潮解后变黑,有一定起泡性,适用于铜、铅、锌、镍等硫化矿的浮选。弱碱性矿浆中对黄铁矿和磁黄铁矿的捕收能力较弱,对方铅矿的捕收能力较强。 3.3铅锌浮选调整剂 调整剂按其在浮选过程中的作用可分为抑制剂、活化剂、介质pH调节剂、矿泥分散剂、凝结剂和续凝剂。 调控剂包括各种无机化合物如盐、碱和酸、有机化合物。同一种药剂,在不同的浮选条件下,往往起不同的作用。 一、抑制剂 1.石灰石灰CaO有强烈的吸水性,与水作用生成消石灰Ca0H2。它难溶于水,是一种强碱,加入浮选矿浆中的反应如下 CaOH2O=CaOH2 CaOH2CaOHOH- CaOH=Ca20H- 石灰常用于提高矿浆PH值,抑制硫化铁矿物。在硫化铜、铅、锌矿石中,常伴生有硫化铁矿黄铁矿、磁黄铁矿和白铁矿、硫砷铁矿如毒砂,为了更好处浮选铜、铅、锌矿物,常要加石灰抑制硫化铁矿物。 石灰对方铅矿,特别是表面略有氧化的方铅矿,有抑制作用。因此,从多金属硫化矿中浮选方铅矿时,常采用碳酸钠调节矿浆pH。如果由于黄铁矿含量较高,必须用石灰调节矿浆pH时,应注意控制石灰的用量。 石灰对起泡剂的起泡能力有影响,如松醉油类起袍剂的起泡能力,随PH的升高而增大,酚类起泡剂的起泡能力,则随pH的升高而降低。 石灰本身又是一种凝结剂,能使矿桨中微细颗粒凝结。因而,当石灰用最适当时,浮选泡沫可保持一定的粘度;当用量过大时,将促使微细矿粒凝结,而使泡沫粘结膨胀,影响浮选过程的正常进行。 2.氰化物NaCN、KCN氰化物是铅锌分选时的有效抑制剂。氰化物主要是氰化钠和氰化钾,也有用氰化钙的。 氰化物是强碱弱酸生成的盐,它在矿浆个水解,生成HCN和CN- KCN=KCN- CNH2O=HCNOH- 由上述平衡式看出,碱性矿浆中,CN-浓度提高,有利于抑制。如pH降低,形成HCN氢氰酸使抑制作用降低。因此,使用氰化物,必须保持矿浆的碱性。 氰化物是剧毒的药剂,多年来一直在进行无氰或少氰抑制剂的研究。 3.硫酸锌 硫酸锌其纯品为白色晶体,易溶于水,是闪锌矿的抑制剂,通常在碱性矿浆中它才有抑制作用,矿浆pH愈高,其抑制作用愈明显。硫酸锌在水中产生下列反应 ZnSO4=Zn2SO42- Zn22H20ZnOH22H ZnOH2为两性化合物,溶于酸生成盐 ZnOH2H2S04=ZnSO42H2O 在碱性介质中,得到HZnO2-和ZnO22-。它们吸附于矿物增强了矿物表面的亲水性。 ZnOH2NaOH=NaHZnO2H2O ZnOH22NaOH=Na2ZnO22H2O 硫酸锌单独使用时,共抑制效果较差,通常与氰化物、硫化钠、亚硫酸盐或硫代硫酸盐、碳酸钠等配合使用。 硫酸锌和氰化物联合使用,可加强对闪锌矿的抑制作用。一般常用的比例为氰化物硫酸锌=125。此时,CN-和Zn2形成胶体ZnCN2沉淀。 4.亚硫酸、亚硫酸盐、S02气体等 亚硫酸、亚硫酸盐、二氧化硫气体这类药剂包括二氧化硫SO2、亚硫酸H2S03、亚硫酸钠和硫代硫酸钠等。 二氧化硫溶于水生成亚硫酸 S02十H2O=H2S03 二氧化硫在水中的溶解度随温度的升高而降低,18℃时,用水吸收,其中亚硫酸的浓度为1.2;温度升高到30℃时,亚硫酸的浓度为0.6。亚硫酸及其盐具有强还原性,故不稳定。亚硫酸可以和很多金属离子形成酸式盐、亚硫酸氢盐或正盐亚硫酸盐,除碱金属亚硫酸正盐易溶于水外,其他金属的正盐均微溶于水。亚硫酸在水中分二步解离,溶液中H2SO3、HSO3-和SO32-的浓度,取决于溶液的pH值。使用亚硫酸盐浮选时,矿桨PH常控制在57的范围内。此时,起抑制作用的主要是HSO3-。二氧化硫及亚硫酸盐主要用于抑制黄铁矿、闪锌矿。用溶解有二氧化硫的石灰造成的弱酸性矿桨pH57,或者使用二氧化硫与硫酸锌、硫酸亚铁、硫酸铁等联合作抑制剂。此时方铅矿、黄铁矿、闪锌矿受到抑制,被抑制的闪锌矿,用少量硫酸铜即可活化。还可以用硫代硫酸钠、焦亚硫酸钠代替亚硫酸盐,抑制闪锌矿和黄铁矿。 对于被铜离子强烈活化的闪锌矿,只用亚硫酸盐其抑制效果较差。此时,如果同时添加硫酸锌,硫化钠或氰化物,则能够增强抑制效果。亚硫酸盐在矿浆中易于氧化失效,因而,其抑制作用有时间性。为使过程稳定,通常采用分段添加的方法。 5.起泡剂 起泡剂应是异极性的有机物质,极性基亲水,非极性基亲气,使起泡剂分子在空气与水的界面上产生定向排列,大部分起泡剂是表面活性物质,能够强烈地降低水的表面张力。同一系列的有机表面活性剂表顶活性按“三分之一”的规律递增,此即所谓“特芳贝定则”。起泡剂应有适当的溶解度。起泡剂的溶解度,对起泡性能及形成气泡的特性有很大的影响,如溶解度很高,则耗药量大,或迅速发生大量泡沫,但不能耐久,当溶解度过低冰来不及溶解,随泡沫流失,或起泡速度缓慢,延续时间校长,难于控制。 铁矿的选矿与加工技术 我国铁矿由于贫矿多(占总储量的97.5%)和伴共生有其他组分的综合矿多(占总储量的1/3),所以在冶炼前绝大部分需要进行选矿处理。 1996年全国入选铁矿石21497万t,占全国产铁矿石原矿25228万t的85.2%。入选铁矿石生产铁精矿粉8585.7万t,其中重点选矿厂处理原矿10961万t,生产铁精矿粉4158万t,占全国铁精矿粉产量的48.4%。 一)矿石破碎 我国选矿厂一般采用粗破、中破和细破三段破碎流程破碎铁矿石。粗破多用1.2m或1.5m旋回式破碎机,中破使用2.1m或2.2m标准型圆锥式破石机,细破采用2.1m或2.2m短头型圆锥式破碎机。通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛分成矿石粒度小于12mm的最终产品送磨矿槽。 二)磨矿工艺 我国铁矿磨矿工艺,大多数采用两段磨矿流程,中小型选矿厂多采用一段磨矿流程。由于采用细筛再磨新工艺,近年来一些选矿厂已由两段磨矿改为三段磨矿。采用的磨矿设备一般比较小,最大球磨机3.6m6m,最大棒磨机3.2m4.5m,最大自磨机5.5m1.8m,砾磨机2.7m3.6m。 磨矿后的分级基本上使用的是螺旋分级机。为了提高效率,部分选矿厂用水力旋流器取代二次螺旋分级机。 (三)选别技术 1.磁铁矿选矿 主要用来选别低品位的“鞍山式”磁铁矿。由于矿石磁性强、好磨好选,国内磁选厂均采用阶段磨矿和多阶段磨矿流程,对于粗粒嵌布的磁铁矿采用前者(一段磨矿),细粒、微细粒嵌布的磁铁矿采用后者(二段或三段磨矿)。我国自己研制的系列化的永磁化,使磁选机实现了永磁化。70年代以后,由于在全国磁铁矿选矿厂推广了细筛再磨新技术,使精矿品位由62%提高到了66%左右,实现了冶金工业部提出精矿品位达到65%的要求。 (四)烧结球团技术 烧结技术是我国人造富矿的主要手段。1996年共生产人造富矿16095.6万t,其中重点企业9485.9万t,占58.9,地方国营企业6133.7万t,占38.1。 我国在细精矿烧结的技术上已达到相当水平。鞍钢早在50年代初就在烧结
展开阅读全文