资源描述:
全日制全日制硕士学位论文硕士学位论文 采煤机截割部行星机构疲劳寿命分析与预测 Fatigue LifeAnalysis and Prediction of Planetary Mechanism in Shearer Cutting Part 作者姓名张波 导师姓名赵丽娟 教授 学科专业机械工程 研究方向机械设计及理论 完成日期 2020 年 08 月 11 日 辽宁工程技术大学 Liaoning Technical University 万方数据 采 煤 机 截 割 部 行 星 机 构 疲 劳 寿 命 分 析 与 预 测 张 波 辽 宁 工 程 技 术 大 学 万方数据 关关于于学学位位论论文文使使用用授授权权的的说说明明 本学位论文作者及指导教师完全了解 辽辽宁宁工工程程技技术术大大学学 有关保 留、使用学位论文的规定,同意 辽辽宁宁工工程程技技术术大大学学 保留并向国家有关 部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅,学校可 以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影 印、缩印或扫描等复制手段保存、汇编本学位论文。 保密的学位论文在解密后应遵守此协议。 学位论文作者签名____________导师签名_____________ 年月日年月日 万方数据 2020814 中图分类号TD421学校代码10147 UDC621密级公 开 辽宁工程技术大学 全日制全日制硕士学位论文硕士学位论文 采煤机截割部行星机构疲劳寿命分析与预测 Fatigue LifeAnalysis and Prediction of Planetary Mechanism in Shearer Cutting Part 作者姓名张波学号471720055 导师姓名赵丽娟(教授)副导师姓名(教授) 申请学位工学硕士培养单位机械学院 学科专业机械工程研究方向机械设计及理论 二○二○年八月 万方数据 致致 谢谢 时间飞逝,从不停歇,万物更新,我们在成长,回首硕士三年在采掘机械装备与技术 实验室的日子,全是五彩斑斓的光影。17 年的相聚不是开始,20 年的离别也不是结束, 三年硕士期间的无数美好瞬间,是我人生中最宝贵的财富。 感谢我的导师赵丽娟教授,您一丝不苟的学术态度,登堂入室的教科研水平,别出机 杼的创新能力,耳提面命的育人态度和积极向上的工作态度是我人生路上的风向标,鼓励 着我不断进取,积极向上。在导师的激励、支持和指导下,完成了论文的撰写,在此,再 次对我的导师对我的付出表示由衷的感谢 感谢国家自然科学基金“夹矸煤岩高效截割滚筒落煤动力传递规律及结构进化理论研 究 ”的项目支撑和资金支持。 感谢在论文撰写及仿真过程中提供建议和帮助的刘旭男博士、李明昊博士、尚祖恩博 士、金鑫博士、张美晨博士、王亚东博士、马联伟硕士、金忠峰硕士、罗贵恒硕士等实验 室的各位师兄师姐和师弟师妹们,感谢同届的每一个人的支持和鼓励,感谢我的母校辽宁 工程技术大学及全体师生为我提供的良好的学习环境,让我的校园生活充满了阳光。 感谢我的父母、姐姐和女朋友对我的付出,让我有继续前行的动力。 感谢给予转载和引用权的资料、 文献的所有者; 感谢每一位学位论文答辩和评审老师, 由于时间和能力有限,希望各位老师批评指正,不胜感激。 万方数据 I 摘摘要要 行星机构是采煤机截割部关键部件,煤层赋存条件、采煤机运动学参数及其各零件的 结构特点对其疲劳寿命有直接影响。 为对采煤机截割部行星机构关键零件进行疲劳寿命分析及预测,运用 Pro/E 构建了 MG2*55/250-BW 型采煤机截割部的三维实体模型, 运用 ANSYS 和 ADAMS 联合构建了截 割部的刚柔耦合动力学仿真模型,仿真得到了截割部行星机构关键零件的最大应力值并以 此作为输入,利用 nSoft 得到了行星架和行星轴的疲劳寿命及损伤值,并找到了薄弱环节。 讨论了夹矸坚固性系数f、采煤机牵引速度v、滚筒转速n和截深B对截割部行星架疲劳 寿命的影响,利用 BP、PSO-BP 和改进的 PSO-BP 对不同工况下的行星架寿命进行预测。 研究表明煤坚固性系数为 1.4、夹矸坚固性系数为 8.4、牵引速度为 2.5m/min、转速为 90r/min、截深为 600mm 的工况下,行星架和行星轴的最大应力分别为 554.7812MPa 和 411.5875MPa,应力集中区域分别为行星架花键退刀槽处和行星轴两端轴肩处,疲劳寿命 分别为 5.5072e6 和 1.1373e8; 以采煤机截割-装煤性能最优为目标, 构建了采煤机牵引速度 与滚筒转速协同调速控制模型,在该模型中,推荐牵引速度与实际工作牵引速度的误差计 算模块以及推荐转速和与实际工作转速的误差计算模块中观察差值均接近于 0,证明了此 系统可以实现采煤机的协同调速,且以该v-n工作,可以提高采煤机的工作性能及其关键 零件的疲劳寿命;BP、PSO-BP 和改进的 PSO-BP 三种神经网络模型中,预测疲劳寿命最 大相对误差分别为 4.61、2.79和 1.02,迭代次数分别为 25、8 和 6 次,因此,改进的 PSO-BP 模型既可提高预测精度, 也提高了迭代速度。 融合 Pro/E、 ANSYS、 ADAMS、 nSoft 和改进的 PSO-BPNN,为工矿装备关键零件的疲劳寿命预测提供了新的方法。 该论文有图 59 幅,表 16 个,参考文献 84 篇。 关键词关键词采煤机;行星机构;疲劳寿命;协同调速;改进的 PSO-BP 神经网络 万方数据 II Abstract The planetary mechanism is the key part of the shearer cutting part. The coal seam occurrence condition, the kinematics parameters of the shearer and the structural characteristics of each part have a direct influence on its fatigue life. To analyze and predict the fatigue life of the key parts of the planetary mechanism of the shearer cutting part, a three-dimensional solid model of the cutting part of the MG2*55/250-BW shearer is constructed by using the Pro/E, the rigid-flexible coupling dynamic simulation model of cutting part is constructed by using ANSYS and ADAMS. The maximum stress value of key parts of cutting part planetary mechanism is obtained and used as . The fatigue life and damage value of planet carrier and planet shaft are obtained by nSoft, and the weak link is found. Discussed the impact of the gangue ruggedness coefficient f, traction speed v, drum speed n and cutting depth B on the fatigue life. The BP、PSO-BP and improved PSO-BP are used to predict the life of planet carrier under different working conditions. The results show that, under the conditions of coal firmness factor is 1.4, the firmness coefficient of the gangue is 8.4, the traction speed is 2.5m/min, the rotation speed is 90r/min, and the cutting depth is 600mm, the maximum stress of planet carrier and planet shaft are 554.7812 MPa and 411.5875 MPa, respectively the stress concentration area is at the spline retrogression groove of planet carrier and the shaft shoulder of planet shaft, the fatigue life is 5.5072 e6 and 1.1373 e8; respectively aimed at cutting - coal loading perance of shearer, constructing the model of co-control of traction speed and drum speed of shearer, in the cooperative speed control model, the error calculation module of recommended traction speed and actual working traction speed and the error calculation module of recommended speed and actual working speed are close to 0, it is proved that this system can realize cooperative speed regulation of shearer, and work on that n-v, can improve the perance of shearer and fatigue life of key parts; BP, PSO-BP and improved PSO-BP three neural network models, the maximum relative error in predicting fatigue life is 4.61, 2.79 and 1.02, the number of iterations is 25,8 and 6, improved PSO-BP model improves prediction accuracy, also improves the iteration speed. The integration of Pro/E, ANSYS, ADAMS, nSoft and improved PSO-BPNN provides a new for the fatigue life prediction of key parts of industrial and mining equipment. The paper has 59 pictures ,16 tables and 84 references. Keywords Shearer; Planetary mechanism; Fatigue life; Coordinated speed control; Improved PSO-BP neural network 万方数据 III 目目录录 摘摘要要............................................................................................................................................. I I 目目录录.........................................................................................................................................IIIIII 图清单图清单.........................................................................................................................................VIIVII 表清单表清单...........................................................................................................................................XIXI 变量注释表变量注释表.................................................................................................................................XIIXII 1 1 绪论绪论............................................................................................................................................. 1 1 1.1 研究背景................................................................................................................................. 1 1.2 国内外研究与应用现状......................................................................................................... 1 1.3 论文研究的意义及主要内容................................................................................................. 5 2 2 采煤机疲劳寿命分析与预测基础理论采煤机疲劳寿命分析与预测基础理论.....................................................................................7 7 2.1 疲劳寿命分析基础理论......................................................................................................... 7 2.2 多目标优化基础理论............................................................................................................. 9 2.3 BP 神经网络基础理论.......................................................................................................... 10 2.4 本章小结............................................................................................................................... 15 3 3 截割部截割部行星机构关键零件疲劳寿命分析行星机构关键零件疲劳寿命分析...............................................................................1 16 6 3.1 采煤机三维实体模型构建................................................................................................... 16 3.2 刚柔耦合模型构建............................................................................................................... 17 3.3 行星机构关键零件动力学分析........................................................................................... 18 3.4 行星机构关键零件疲劳寿命分析....................................................................................... 20 3.5 影响疲劳寿命的参数分析................................................................................................... 22 3.6 采煤机协同调速的实现....................................................................................................... 32 3.7 本章小结............................................................................................................................... 42 4 4 截割部截割部行星架行星架疲劳寿命预测疲劳寿命预测...................................................................................................4 44 4 4.1 基于神经网络的疲劳寿命预测模型构建........................................................................... 44 4.2 行星架疲劳寿命预测........................................................................................................... 48 4.3 本章小结............................................................................................................................... 51 5 5 结论与展望结论与展望............................................................................................................................... 5 52 2 5.1 结论....................................................................................................................................... 52 万方数据 IV 5.2 展望....................................................................................................................................... 53 参考文献参考文献.......................................................................................................................................5 54 4 作者简历作者简历.......................................................................................................................................5959 学位论文原创性声明学位论文原创性声明...................................................................................................................6060 学位论文数据集学位论文数据集...........................................................................................................................6161 万方数据 V Content Abstract...........................................................................................................................................I Contents....................................................................................................................................... III List of Figures.............................................................................................................................VII List of Tables................................................................................................................................XI List of Variables......................................................................................................................... XII 1 Introduction.................................................................................................................................1 1.1 Background................................................................................................................................1 1.2 Research Status at Home and Abroad........................................................................................1 1.3 The Significance and Main Contents of Thesis.........................................................................5 2 Basic Theory of Fatigue LifeAnalysis and Prediction of Shearer..........................................7 2.1 Basic Theory of Fatigue LifeAnalysis......................................................................................7 2.2 Basic Neural Network Theory...................................................................................................9 2.3 Basic Theory of Multiobjective Optimization.........................................................................10 2.4 Summary of This Chapter........................................................................................................15 3 Fatigue life analysis of key parts of planetary mechanism in shearer cutting part............16 3.1 Construction of 3D Model of Shearer......................................................................................16 3.2 Construction of Rigid-flexible Coupling Model ....................................................................17 3.3 DynamicsAnalysis of Key Parts of Planetary Mechanism..................................................... 18 3.4 Fatigue Life Analysis of Key Parts of Planetary Mechanism..................................................20 3.5Analysis of Factors Influencing Fatigue Life.......................................................................... 22 3.6 Realization of Coordinated Speed Regulation of Shearer.......................................................32 3.7 Summary of This Chapter........................................................................................................42 4 Prediction of Fatigue Life of Cutting Planet Carrier............................................................44 4.1 Construction of Fatigue Life Prediction Model Based on Neural Network............................44 4.2 Prediction of Fatigue Life of Planetary Carrier.......................................................................48 4.3 Summary of This Chapter........................................................................................................51 5 Conclusions and Innovative Points......................................................................................... 52 5.1 Conclusions..............................................................................................................................52 万方数据 VI 5.2 Innovative Points..................................................................................................................... 53 References.....................................................................................................................................54 Author’s Resume..........................................................................................................................59 Declaration of Thesis Originality............................................................................................... 60 Thesis Data Collection.................................................................................................................61 万方数据 VII 图清单图清单 图序号图名称页码 图 2.1疲劳寿命分析的基本流程9 Figure 2.1Basic flow of fatigue analysis9 图 2.2BP 神经网络的基本运行过程12 Figure 2.2Basic operation process of BP neural network12 图 3.1行星轴16 Figure3.1Planet shaft16 图 3.2行星架16 Figure3.2Planet carrier16 图 3.3行星机构爆炸图16 Figure3.3Planetary mechanism explosion map16 图 3.4MG2*55/250-BW 型采煤机截割部三维实体模型17 Figure3.43D solid model of cutting part of MG2*55/250-BW shearer17 图 3.5构建刚柔耦合模型的流程图17 Figure3.5Flowchart for building rigid-flexible coupling model17 图 3.6MG2*55/250-BW 型采煤机截割部刚柔耦合模型18 Figure3.6 The rigid-flexible coupling model cutting part of of MG2*55/250-BW shearer 18 图 3.7三向力曲线18 Figure3.7Three-direction force curves18 图 3.8 三向力矩曲线 19 Figure3.8Three-direction torque curves19 图 3.9行星架等效应力云图19 Figure3.9Cloud image of equivalent stress of planet carrier19 图 3.10行星轴等效应力云图20 Figure3.10Cloud image of equivalent stress of planet shaft20 图 3.11行星架疲劳寿命云图22 Figure3.11Cloud image of fatigue life of planet carrier22 图 3.12行星轴疲劳寿命云图22 Figure3.12Cloud image of fatigue life of planet shaft22 图 3.13行星架疲劳寿命(v2.5)24 Figure3.13Fatigue life of planet carrierv2.524 图 3.14行星架疲劳寿命(v3)24 Figure3.14Fatigue life of planet carrierv324 图 3.15行星架疲劳寿命(v3.5)24 Figure3.15Fatigue life of
展开阅读全文