捷联惯导与里程计组合的矿用掘进机自主导航定位系统.pdf

返回 相似 举报
捷联惯导与里程计组合的矿用掘进机自主导航定位系统.pdf_第1页
第1页 / 共67页
捷联惯导与里程计组合的矿用掘进机自主导航定位系统.pdf_第2页
第2页 / 共67页
捷联惯导与里程计组合的矿用掘进机自主导航定位系统.pdf_第3页
第3页 / 共67页
捷联惯导与里程计组合的矿用掘进机自主导航定位系统.pdf_第4页
第4页 / 共67页
捷联惯导与里程计组合的矿用掘进机自主导航定位系统.pdf_第5页
第5页 / 共67页
点击查看更多>>
资源描述:
捷联惯导与里程计组合的矿用掘进机 自主导航定位系统 重庆大学硕士学位论文 (专业学位) 学生姓名 刘 豪 指导教师 任春华 副教授 专业学位类别工程仪器仪表工程领域 研究方向组合导航 答辩委员会主席陈刚 教授 授位时间2020 年 6 月 万方数据 An autonomous navigation system of mining TBM based on the combination of SINS and OD A Thesis ted to Chongqing University In Partial fulfillment of the requirement for Professional Degree By Hao Liu Supervised by Associate Prof. Chunhua Ren June , 2020 万方数据 重庆大学硕士学位论文 中文摘要 I 摘 要 矿用掘进机自主导航定位系统能够为矿用掘进机提供实时的姿态、 速度、 位置 等导航信息,是实现煤矿自动化、智能化生产的关键设备之一。煤矿巷道内无法接 收外界 GPS 信号,且长期受粉尘水雾笼罩,巷道内结构特征不明显等问题一直制 约着矿用掘进机(后简称“掘进机” )导航技术的发展。针对掘进机在煤矿巷道内 定位困难的问题,提出了一种基于捷联惯性导航系统Strapdown Inertial Navigation System, SINS和里程计Odometer, OD组合的掘进机自主导航定位系统。该系统能 够充分发挥 SINS 与 OD 的导航定位优势,无需接收除掘进机之外的任何外界信 息, 实现在封闭的煤矿巷道内完全自主的长航时导航定位。 论文主要的研究内容包 括以下几点 首先, 根据前期文献调研以及对掘进机实际工作环境的考察论证结果, 对基于 SINS 和 OD 组合的掘进机自主导航定位系统进行了总体方案设计。在此基础上, 分析了基于 SINS 与 OD 组合的导航原理,对比力方程,姿态更新,速度更新等关 键数学公式进行推导, 对系统误差方程进行了分析整理, 设计了卡尔曼滤波器对系 统的关键误差进行估计。 其次, 针对掘进机在工作时出现打滑现象, 使得里程计数据无法反映掘进机真 实行驶状态,导致掘进机偏离设定路程掘进的异常情况,提出一种基于 BP 神经网 络学习的打滑识别与补偿方法,并进行了相应的理论分析和公式推导。 更进一步,根据组合导航系统的整体设计需求,对关键传感器件进行选型,并 设计了相应的信号采集电路,在此基础上对整个系统的电路进行设计及调试安装。 最后, 设计了多种不同的实验, 对所设计的掘进机自主导航定位系统性能进行 了测试。试验结果表明,所设计的组合导航系统在实验室的静态环境下,在各个方 位角和不同姿态角测试下,方位角误差约为 0.0015,姿态角误差优于 0.008; 在行驶距离约为 8.6 m 的动态重复性精度测试实验中,十一次重复测量重复性为 0.006 m标准差;在长度约 472 m 的长距离长航时的综合定位实验中,系统定位 误差小于 0.2 m,相对误差小于 0.04D(D 表示行驶距离) 。掘进机打滑的实物仿 真实验中,打滑模式综合识别率优于 98,打滑补偿后的定位精度达到 0.14D。 综上所述, 所设计的掘进机自主导航定位系统具有不错的定位精度, 能够初步 满足煤矿巷道内掘进机的定位需求。 关键词关键词掘进机;捷联惯导;里程计;自主导航;打滑 万方数据 重庆大学硕士学位论文 英文摘要 II Abstract The autonomous navigation and positioning system of the mining tunnel boring machine TBM can provide the real-time navigation ination such as attitude, speed and position for the TBM. The development of navigation technology of TBM has been restricted by such problems as the inability to receive external GPS signals in the coal mine roadway, the long time being shrouded by dust and mist, and the lack of obvious structural characteristics in the roadway. It’s difficult to locate in coal mine roadway, and this paper put forward a kind of combination machine autonomous Navigation and positioning System, which based on Strapdown Inertial Navigation System SINS and Odometer OD. The system can give full play to the advantages of SINS and OD in navigation and positioning, and does not need to receive any external ination except the TBM, so as to realize fully autonomous navigation and positioning in the closed coal mine roadway. The research contents of this paper mainly include the following points Firstly, according to the previous literature research and the results of the investigation and demonstration of the actual working environment of the TBM, the overall scheme design of the TBM autonomous navigation and positioning system based on the combination of SINS and OD was carried out. On the basis of the overall design, this paper analyzes the navigation principle based on strapdown inertial navigation and odometer combination, deduces the key mathematical ulae such as the comparative force equation, attitude update, speed update, analyzes the error equation of the system, and designs the Kalman filter to estimate and compensate the key errors of the system. Secondly, in view of the machine at work appear skid phenomenon, makes the odometer data cant reflect the real driving state, put forward a kind of sliding recognition which based on BP neural network learning and the compensation s, and the corresponding theoretical analysis and ula derivation. Furthermore, according to the design requirements of integrated navigation system, the key sensor parts are selected and the corresponding signal acquisition circuit is designed. On this basis, the circuit of the whole system is designed, debugged and installed. Finally, a variety of experiments are designed to test the perance of the designed TBM autonomous navigation and positioning system. The test results show that the azimuth error of the designed integrated navigation system is about 0.0015 and the 万方数据 重庆大学硕士学位论文 英文摘要 III attitude error is better than 0.008 under the static environment of the laboratory and under the test of each azimuth and different attitude angles. In the test experiment of dynamic repeatability accuracy with a driving distance of about 8.6 m, the repeatability of eleven repetitions was 0.006 mstandard deviation.In the comprehensive positioning experiment for a long distance voyage with a length of about 472 m, the positioning error of the system is less than 0.2 m and the relative error is less than 0.04D D represents the distance traveled.In the real simulation experiment of the TBM, the comprehensive recognition rate of the skid mode is better than 98, and the positioning accuracy after the skid compensation reaches 0.14D. To sum up, the designed TBM autonomous navigation positioning system has good positioning accuracy, which can initially meet the positioning needs of TBM in coal mine roadway. Keywords TBM; Strapdown inertial navigation system; Odometer. Autonomous navigation; skid 万方数据 重庆大学硕士学位论文 目 录 IV 目 录 中文摘中文摘要要 .......................................................................................................................................... I 英文摘要英文摘要 ........................................................................................................................................ II 1 绪论绪论 .............................................................................................................................................. 1 1.1 课题背景与意义课题背景与意义 ....................................................................................................................... 1 1.2 室内导航技术研究现状室内导航技术研究现状 ........................................................................................................... 2 1.2.1 室内导航技术国外研究现状 ............................................................................................ 2 1.2.2 室内导航技术国内研究现状 ............................................................................................ 4 1.2.3 研究现状总结 .................................................................................................................... 6 1.3 本课题研究内容本课题研究内容 ....................................................................................................................... 7 2 组合导航基本原理与系统设计组合导航基本原理与系统设计 ................................................................................... 8 2.1 系统设计系统设计 ................................................................................................................................... 8 2.2 坐标系定义与坐标变换坐标系定义与坐标变换 ........................................................................................................... 9 2.3 组合导航原理组合导航原理 ......................................................................................................................... 10 2.3.1 比力方程 .......................................................................................................................... 11 2.3.2 姿态更新 .......................................................................................................................... 12 2.3.3 速度更新 .......................................................................................................................... 13 2.3.4 位置更新 .......................................................................................................................... 15 2.4 误差方程与卡尔曼滤波误差方程与卡尔曼滤波 ......................................................................................................... 15 2.4.1 捷联惯导系统误差方程 .................................................................................................. 16 2.4.2 里程计误差方程 .............................................................................................................. 18 2.4.3 卡尔曼滤波 ...................................................................................................................... 19 2.5 本章小结本章小结 ................................................................................................................................. 20 3 打滑识别与补偿打滑识别与补偿 ................................................................................................................. 21 3.1 神经网络与特征提取神经网络与特征提取 ............................................................................................................. 21 3.1.1 神经网络 .......................................................................................................................... 21 3.1.2 特征提取 .......................................................................................................................... 22 3.2 打滑补偿修正原理打滑补偿修正原理 ................................................................................................................. 23 3.2.1 单侧打滑补偿 .................................................................................................................. 24 3.2.2 双侧打滑与抱死滑行补偿 .............................................................................................. 25 3.3 本章小结本章小结 ................................................................................................................................. 25 万方数据 重庆大学硕士学位论文 目 录 V 4 组合导航系统实现组合导航系统实现 ............................................................................................................ 26 4.1 系统电路总体设计系统电路总体设计 ................................................................................................................. 26 4.2 传感器选型传感器选型 ............................................................................................................................. 27 4.2.1 光纤陀螺仪 ...................................................................................................................... 27 4.2.2 石英挠性加速度计 .......................................................................................................... 28 4.2.3 里程计 .............................................................................................................................. 30 4.3 电路设计电路设计 ................................................................................................................................. 31 4.3.1 加速度计数据采集模块 .................................................................................................. 31 4.3.2 陀螺仪数据采集模块 ...................................................................................................... 33 4.3.3 里程计信号调理模块 ...................................................................................................... 34 4.3.4 核心处理器模块 .............................................................................................................. 34 4.3.5 系统电源模块 .................................................................................................................. 36 4.3.6 电路与组合导航系统样机 .............................................................................................. 36 4.4 本章小结本章小结 ................................................................................................................................. 37 5 实验测试实验测试 ................................................................................................................................. 38 5.1 实验平台介绍实验平台介绍 ......................................................................................................................... 38 5.1.1 双轴精密转台 .................................................................................................................. 38 5.1.2 四轮实验小车 .................................................................................................................. 39 5.1.3 激光测距仪与 RTK 测量仪............................................................................................. 39 5.2 标校与静态实验标校与静态实验 ..................................................................................................................... 40 5.3 综合定位实验综合定位实验 ......................................................................................................................... 41 5.3.1 重复定位实验 .................................................................................................................. 41 5.3.2 长距离定位实验 .............................................................................................................. 43 5.4 打滑识别与补偿实验打滑识别与补偿实验 ............................................................................................................. 46 5.4.1 掘进机打滑识别 .............................................................................................................. 46 5.4.2 打滑误差补偿实验 .......................................................................................................... 50 5.5 本章小结本章小结 ................................................................................................................................. 53 6 总结与展望总结与展望 ............................................................................................................................ 54 6.1 总结总结 ......................................................................................................................................... 54 6.2 展望展望 ......................................................................................................................................... 54 参参 考考 文文 献献 ............................................................................................................................... 55 附附 录录 ....................................................................................................................................... 58 A. 作者在攻读学位期间取得的科研成果目录作者在攻读学位期间取得的科研成果目录 ...................................................................... 58 B. 学位论文数据集学位论文数据集 ..................................................................................................................... 58 万方数据 重庆大学硕士学位论文 目 录 VI 致致 谢谢 ....................................................................................................................................... 59 万方数据 重庆大学硕士学位论文 1 绪论 1 1 绪论 1.1 课题背景与意义 掘进机自主导航定位系统能够为掘进机提供实时的姿态、 速度、 位置等导航信 息,是实现煤矿自动化、智能化生产的关键设备之一。我国煤炭资源十分丰富,也 是世界上最大的煤炭生产国和消费国[1], 煤炭在我国消费的化石能源结构中仍然占 有 70左右[2], 而且在未来相当长的时间内仍将占有重要地位。 而巷道掘进作业是 煤矿开采过程中最危险、 最重要的前端生产环节之一。 随着煤矿开采深度的不断扩 大,掘进工作面出现的冒顶、突水、瓦斯爆炸等灾害现象也越来越严重[3]。在我国 煤矿巷道的掘进作业仍有大量工人参与,而煤矿巷道的高温高湿、噪音、粉尘等恶 劣的环境也极大地威胁着一线工人的身体健康。巷道掘进机是煤矿巷道机械化掘 进的关键设备,如图 1.1 所示,承担了煤岩截割、转运等重要工作。目前巷道掘进 机主要由工人操作, 依靠激光指向仪为巷道掘进提供方向, 掘进机司机通过截割断 面上的激光光斑偏移位置来调整掘进机截割头的位置,此方法对掘进机司机的操 作熟练度和经验要求较高[4]。另外,由于煤矿巷道中大量水雾、粉尘使得掘进机需 要频繁启停测量掘进机方向,使得整个掘进效率低下。而推进巷道掘进自动化、智 能化生产是解决这些问题的有效途径和必然选择[5]。在煤炭工业发展“十三五” 规划和中国制造 2025能源装备实施方案中均提到把将巷道高效快速掘进 列为重点发展目标[6][7]。 图 1.1 一种悬臂式巷道掘进机 Fig 1.1 a cantilever TBM 掘进机的自动导航定位技术是实现掘进机自动化、 智能化的关键技术之一, 是 掘进机自动控制、断面成型与智能截割技术前提[8]。煤矿巷道为封闭环境,无法使 用卫星导航信息, 也面临着复杂的电磁环境, 磁罗盘等器件无法在煤矿巷道下可靠 使用[9]。在掘进机自动导航技术的研究中,煤矿巷道的特殊环境引发的问题一直困 万方数据 重庆大学硕士学位论文 1 绪论
展开阅读全文

资源标签

最新标签

长按识别或保存二维码,关注学链未来公众号

copyright@ 2019-2020“矿业文库”网

矿业文库合伙人QQ群 30735420