面向矿山设备的参数化建模方法研究与系统设计实现.pdf

返回 相似 举报
面向矿山设备的参数化建模方法研究与系统设计实现.pdf_第1页
第1页 / 共87页
面向矿山设备的参数化建模方法研究与系统设计实现.pdf_第2页
第2页 / 共87页
面向矿山设备的参数化建模方法研究与系统设计实现.pdf_第3页
第3页 / 共87页
面向矿山设备的参数化建模方法研究与系统设计实现.pdf_第4页
第4页 / 共87页
面向矿山设备的参数化建模方法研究与系统设计实现.pdf_第5页
第5页 / 共87页
点击查看更多>>
资源描述:
万方数据 中图分类号TP391学校代码10424 UDC004密级公开 山东科技大学 工程硕士专业学位论文 面面向向矿矿山山设设备备的的参参数数化化建建模模方方法法研研究究与与系系统统设设计计实实现现 Research on Parametric Modeling and System Design for Mining Equipment 作者赵鹏入学时间2017 年 9 月 导师卢新明职称教授 申请学位工程硕士所在学院 计算机科学与工程学院 学科(类别)工程方向(领域)计算机技术 答辩日期 2020 年 6 月 10 日提交日期 2020 年 6 月 18 日 万方数据 万方数据 万方数据 万方数据 摘摘要要 近年来,煤矿行业一直持续稳定的发展,对于矿山设备的需求也与日俱增,传统的矿 山设备模型设计系统存在开发周期长等问题, 然而随着计算机辅助设计和计算机图形学等 技术的发展, 基于参数化建模的矿山设备设计已经成为机械产品设计和制造的重要技术手 段。参数化建模方法能够有效解决产品开发周期长的问题,直观反映出产品设计开发的实 际情况,因此,对于矿山设备参数化建模方法的研究有重要的理论和实践意义。 本文设计并实现了一种基于 CSG 构造原理和改进约束 Delaunay 三角剖分算法的参数 化建模方法, 并将其应用在掘进机设备建模系统中。 该方法能够有效提升产品的设计效率, 满足设计不同规格产品的用户需求。本文的主要研究工作如下 (1)提出了一种基于树结构的改进约束 Delaunay 三角剖分算法。算法首先在非约束 域采用逐点插入法构建初始三角网,借助树结构节点指针快速定位三角形,提高三角网的 构网速度;然后再利用拓扑关系和插入点定位首三角形的方法,进一步改进嵌入边影响域 搜索算法,提高影响域快速搜索的效率,使约束边合理嵌入三角网,减少三角网重构;最 后采用 5 个煤矿地形数据点进行测试, 分别对不同算法的时间复杂度和不同阈值算法效率 进行对比实验和分析, 通过实验表明, 该算法在实现约束三角剖分过程中的效率显著提高。 (2)分析了系统需求,在此基础上设计并实现了掘进机参数化建模系统。系统以提 出的改进约束 Delaunay 三角剖分算法为基础, 以蓝光数字矿山软件为平台, VB6.0 为编程 工具,实现在蓝光平台上的二次开发。系统通过不规则体法向量拉伸算法,实现二维面域 向三维模型实体的转换。 系统界面参数采用人机交互方式, 内部采用参数尺寸程序设计法, 实现了模型的快速设计和三维可视化。 关键词关键词矿山设备;参数化建模;计算机辅助设计;约束 Delaunay 三角剖分;CSG 构造 万方数据 Abstract In recent years, the coal mining industry has continued to develop steadily, and the demand for mining equipment is also increasing. The traditional mining equipment model design system has problems such as long development cycles. However, with the development of computer-aided design and computer graphics and other technologies, based on parameters Mine equipment design based on modeling has become an important technical means for the design and manufacture of mechanical products. Parametric modeling can effectively solve the problem of long product development cycle, and intuitively reflects the actual situation of product design and development. Therefore, it has important theoretical and practical significance for the research of mining equipment parametric modeling . This paper designs and implements a parametric modeling based on the CSG construction principle and improved constrained Delaunay triangulation algorithm, and applies it to the roadheader equipment modeling system. This can effectively improve the design efficiency of products and meet the needs of users who design products with different specifications. The main research work of this article is as follows 1 An improved constrained Delaunay triangulation algorithm based on tree structure is proposed. The algorithm first uses the point-by-point insertion to construct the initial triangle network in the non-constrained domain. The tree structure node pointer is used to quickly locate the triangle to improve the speed of the triangle network. Then, the top triangle and the insertion point are used to locate the first triangle to further improve the embedding. The edge influence domain search algorithm improves the efficiency of the fast search of the influence domain, enables the constrained edges to be reasonably embedded in the triangle network, and reduces the triangle network reconstruction; finally, 5 coal mine terrain data points are used for testing, and the time complexity and different thresholds of different algorithms are respectively tested The efficiency of the algorithm is compared and analyzed. The experiments show that the efficiency of the algorithm in the process of constrained triangulation is significantly improved. 2 Analyze the system requirements, and design and implement a parameterized modeling system for the roadheader on this basis. The system is based on the proposed improved constrained Delaunay triangulation algorithm, using the Blu-ray digital mine software as the plat and VB6.0 as the programming tool to realize the secondary development on the Blu-ray plat. The system uses the normal volume normal vector stretching algorithm to convert the two-dimensional area to the three-dimensional model entity. The interface parameters of the system adopt the human-computer interaction mode, and the internal parameter size programming is used to realize the rapid design and three-dimensional 万方数据 visualization of the model. Keywords Mining equipment; Parametric modeling; Computer aided design; Constrained Delaunay triangulation; CSG construction 万方数据 目目录录 图清单.............................................................................................................................................I 表清单..........................................................................................................................................IV 变量注释表....................................................................................................................................V 1 绪 论.......................................................................................................................................... 1 1.1 研究背景与意义............................................................................................................. 1 1.2 研究现状及分析............................................................................................................. 1 1.3 研究内容......................................................................................................................... 4 1.4 技术路线......................................................................................................................... 4 1.5 论文结构......................................................................................................................... 5 2 基础理论.................................................................................................................................... 7 2.1 三维实体造型的基本概念............................................................................................. 7 2.2 三维实体建模表示方法................................................................................................. 8 2.3 Voronoi 图与 Delaunay 三角剖分..................................................................................11 2.4 经典 Delaunay 三角剖分算法......................................................................................15 2.5 本章小结....................................................................................................................... 17 3 基于树结构的约束 Delaunay 三角剖分算法.........................................................................19 3.1 改进约束 Delaunay 三角剖分算法..............................................................................19 3.2 算法流程....................................................................................................................... 19 3.3 三角形快速定位算法................................................................................................... 24 3.4 LOP 局部优化................................................................................................................26 3.5 插入约束边算法........................................................................................................... 27 3.6 实验与分析................................................................................................................... 29 3.7 本章小结....................................................................................................................... 33 4 掘进机参数化建模系统需求分析.......................................................................................... 34 4.1 功能性需求分析........................................................................................................... 34 4.2 非功能性需求分析....................................................................................................... 35 4.3 系统需求用例模型....................................................................................................... 36 4.4 本章小结....................................................................................................................... 37 5 掘进机参数化建模系统设计.................................................................................................. 38 5.1 系统架构和模块划分................................................................................................... 38 万方数据 5.2 主要技术和平台........................................................................................................... 40 5.3 实体建模设计思想....................................................................................................... 42 5.4 参数化设计................................................................................................................... 43 5.5 本章小结....................................................................................................................... 45 6 掘进机三维可视化实现.......................................................................................................... 47 6.1 系统设计界面实现....................................................................................................... 47 6.2 掘进机零部件实现....................................................................................................... 48 6.3 向量多边界拉伸........................................................................................................... 55 6.4 掘进机装配................................................................................................................... 56 6.5 本章小结....................................................................................................................... 60 7 总结与展望.............................................................................................................................. 61 7.1 论文总结....................................................................................................................... 61 7.2 工作展望....................................................................................................................... 61 参考文献 作者简历 致谢 学位论文数据集 万方数据 Contents List of Figures................................................................................................................................I List of Tables...............................................................................................................................IV List of Variable.............................................................................................................................V 1 Introduction................................................................................................................................1 1.1 Research background and significance.............................................................................1 1.2 Research status and analysis.............................................................................................1 1.3 Research contents............................................................................................................. 4 1.4 Technical route..................................................................................................................4 1.5 Thesis structure.................................................................................................................5 2 Basic theory................................................................................................................................7 2.1 Basic concept of 3D solid modeling.................................................................................7 2.2 3D solid modeling representation.....................................................................................8 2.3 Voronoi diagram and Delaunay triangulation.................................................................11 2.4 Classic Delaunay triangulation algorithm.......................................................................15 2.5 Chapter summary............................................................................................................17 3 Defined Delaunay triangulation algorithm based on tree structure...................................19 3.1 Improved Constrained Delaunay Triangulation Algorithm............................................19 3.2 Improved algorithm flow................................................................................................19 3.3 Triangle fast positioning algorithm.................................................................................24 3.4 LOP local optimization...................................................................................................26 3.5 Insert constraint edge algorithm..................................................................................... 27 3.6 Experiment and analysis.................................................................................................29 3.7 Chapter summary............................................................................................................33 4 Requirement analysis of parametric modeling system for roadheader..............................34 4.1 Functional needs analysis............................................................................................... 34 4.2 Non-functional requirements analysis............................................................................35 4.3 System requirements use case model..............................................................................36 4.4 Chapter summary............................................................................................................37 5 Design of parametric modeling system for roadheader....................................................... 38 5.1 System architecture and module partitioning................................................................. 38 万方数据 5.2 Main technologies and plats....................................................................................40 5.3 Solid modeling design.................................................................................................... 42 5.4 Parametric design............................................................................................................43 5.5 Chapter summary............................................................................................................45 6 3D visualization of roadheader...............................................................................................47 6.1 System design interface implementation........................................................................47 6.2 Roadheader component realization.................................................................................48 6.3 Vector multi-boundary stretching................................................................................... 55 6.4 Roadheader assembly..................................................................................................... 56 6.5 Chapter summary............................................................................................................60 7 Summary and prospects..........................................................................................................61 7.1 Paper summary...............................................................................................
展开阅读全文

资源标签

最新标签

长按识别或保存二维码,关注学链未来公众号

copyright@ 2019-2020“矿业文库”网

矿业文库合伙人QQ群 30735420