资源描述:
工程硕士学位论文 前后缘前后缘仿生仿生结构结构叶片对叶片对矿用矿用对旋局部通风机对旋局部通风机 气动气动噪声噪声性能性能的影响的影响 Effect of Bionic Blades with Leading and Trailing-edge on Aerodynamic Noise Perance of Mine Contra-rotating Local Fan 作作 者者 李晓凯李晓凯 导导 师师 陈庆光陈庆光 教授教授 山东科技大学 二〇二〇年六月 万方数据 中图分类号 TH432 学校代码 10424 UDC 密 级 公 开 山东科技大学 工程硕士学位论文 前后缘前后缘仿生仿生结构结构叶片对矿用对旋局部通风机叶片对矿用对旋局部通风机 气动噪声气动噪声性能的性能的影响影响 Effect of Bionic Blades with Leading and Trailing-edge on Aerodynamic Noise Perance of Mine Contra-rotating Local Fan 作 者 李晓凯 入学时间 2017 年 9 月 导 师 陈 庆 光 职 称 教 授 副 导 师 李 栋 职 称 高级工程师 申请学位 工 程 硕 士 所在学院 机械电子工程学院 学科(类别)工 程 硕 士 方向(领域) 动 力 工 程 答辩日期 2020 年 7 月 提交日期 2020 年 6 月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解山东科技大学有关保留、使用学位论文的规定,同意本人所撰写的学位 论文的使用授权按照学校的管理规定处理。 作为申请学位的条件之一,学校有权保留学位论文并向国家有关部门或其指定机构送 交论文的电子版和纸质版;有权将学位论文的全部或部分内容编入有关数据库发表,并可 以以电子、网络及其他数字媒体形式公开出版;允许学校档案馆和图书馆保留学位论文的 纸质版和电子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书馆等场所 或在校园网上供校内师生阅读、浏览。 (保密的学位论文在解密后适用本授权) 作者签名 导师签名 日 期 年 月 日 日 期 年 月 日 万方数据 学位论文原创性声明学位论文原创性声明 本人呈交给山东科技大学的学位论文,除所列参考文献和世所公认的文献外,全部是 本人攻读学位期间在导师指导下的研究成果。除文中已经标明引用的内容外,本论文不包 含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集 体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 若有不实之处,本人愿意承担相关法律责任。 学位论文作者签名 年 月 日 万方数据 学位论文审查认定书学位论文审查认定书 研究生 在规定的学习年限内,按照培养方案及个人培养计划,完成了课 程学习,成绩合格,修满规定学分;在我的指导下完成本学位论文,论文中的观点、数据、 表述和结构为我所认同,论文撰写格式符合学校的相关规定,同意将本论文作为申请学位 论文。 导师签名 日 期 万方数据 摘摘 要要 矿用对旋式局部通风机是用于井下如岩巷、煤巷掘进工作面等局部区域进行通风换气 的重要设备,但由于其高噪声对工作面有限的空间造成严重污染,不仅恶化了工人的作业 环境,同时较高的声强可能会掩蔽井下某些信号,为井下安全高效生产埋下隐患。因此, 如何在确保不显著降低局部通风机气动性能的前提下,进一步提高其声学性能,降低其运 行噪声,对于改善井下工作环境和保证安全生产都具有重要意义。 本文借鉴鸮翼尾缘锯齿形结构和座头鲸前缘非光滑结构的降噪性能,针对一台矿用对 旋局部通风机的前级转子进行叶片仿生结构设计,分别设计了锯齿状尾缘、波浪形前缘和 锯齿状尾缘加波浪形前缘 3 种叶片仿生结构。数值模拟和分析了锯齿状尾缘和波浪形前缘 这 2 种叶片仿生降噪措施对局部通风机的气动及声学性能的影响。主要研究工作如下 (1)首先在设计工况流量(Qd)下,分别研究了 3 种仿生叶片结构对局部通风机气 动性能的影响。与原始叶片相比,在采用锯齿状尾缘、波浪形前缘、以及锯齿状尾缘加波 浪形前缘这 3 种仿生叶片结构后,风机的全压升分别降低了 6.66、1.21和 6.18,全压 效率分别降低了 0.21、0.61和 0.86,降低幅度并不明显。然后数值分析了不同流量工 况下 3 种仿生叶片结构对局部风机气动性能的影响。 结果表明 在小流量工况 (0.8Qd) 下, 3 种仿生叶片结构对局部通风机的全压效率和全压升的影响都比较小;在大流量工况 (1.2Qd)下,采用波浪形前缘仿生叶片可以显著提升风机的全压升和全压效率,而采用锯 齿状尾缘、锯齿形尾缘加波浪形前缘仿生叶片结构却使风机的全压效率和全压升大幅降 低。因此,为了确保采用仿生叶片结构不显著降低局部通风机的气动性能,应使风机尽量 在设计流量工况及略小于设计流量的工况下运行。 (2)基于 LES 方法并结合 FW-H 方程的数值分析,揭示了锯齿状尾缘和波浪形前缘 仿生叶片结构对风机离散单音噪声和湍流宽频噪声的降噪机理。研究发现,采用锯齿形尾 缘结构仿生叶片时,抑制了原始叶片(直尾缘)在尾缘处产生的大尺度展向涡脱落现象, 减弱了叶片表面的压力脉动强度,从而实现了离散单音噪声的降低;波浪状前缘结构仿生 叶片能够显著降低叶片前缘处的压力脉动,从而降低了风机的湍流宽频噪声。 (3)采用数值模拟的方法,对比分析了锯齿状尾缘、波浪形前缘和锯齿状尾缘加波 浪形前缘 3 种仿生叶片结构在降低风机离散单音噪声与湍流宽频噪声方面的性能。结果表 明,在不显著降低局部通风机气动性能的情况下,与原始叶片结构相比,本文所考察的 3 种仿生叶片结构均具有一定的降噪效果;采用锯齿状尾缘加波浪形前缘仿生叶片结构的风 机, 与仅采用锯齿状尾缘或波浪形前缘单一仿生结构叶片的风机相比, 降噪效果更加明显; 与采用原始叶片结构的风机相比,在 1 倍、2 倍和 3 倍叶片通过频率(BPF)处,采用锯 齿状尾缘加波浪形前缘仿生结构的叶片后, 可使风机的离散单音噪声分别平均降低 2.2 dB、 万方数据 3.8 dB 和 5 dB,同时湍流宽频噪声降低 10 dB 以上。 关键词关键词矿用对旋局部通风机;波浪形前缘;锯齿状尾缘;气动性能;气动噪声 万方数据 Abstract The contra-rotating local fans used in mines are important equipment for ventilation and ventilation in underground local areas such as rock roadway and coal road way heading face, but its high noise causes serious pollution to the limited space of the working face, which not only deteriorates the working environment of the workers, but also interferes with the signal of the underground. Therefore, how to further improve the acoustic perance and reduce the operating noise of the local ventilator under the premise of ensuring that the aerodynamic perance of the local fan is not significantly reduced is of great significance for improving the underground working environment and ensuring the safety of production. In this thesis, three kinds of blade biomimetic structures are designed for the front stage rotor of a mine counter-rotating local fan. On the basis of the large eddy simulation LES and the FW-H equation, the influence of the two kinds of blade bionic noise reduction measures on the aerodynamic and acoustic perance of the local fan is analyzed. The main research work includes the following aspects 1 Firstly, under the design condition flow rate Qd, the influence of three bionic blade structures on the aerodynamic perance of local fan is studied respectively. Compared with the original blade,the three bionic blade structures were adopted, such as serrated trailing-edge, wavy leading-edge, serrated trailing-edge and wavy leading-edge.The total pressure rise of the fan decreased by 6.66,1.21 and 6.18,and the total pressure efficiency decreased by 0.21,0.61 and 0.86, respectively. The decrease range is not significant. Then the influence of three bionic blade structures on the aerodynamic perance of local fan under different flow conditions is analyzed numerically. At low flow rate 0.8Qd, the effect of three kinds of bionic blade structures on the total pressure efficiency and the total pressure rise of the local fan is relatively small At high flow rate 1.2Qd, the total pressure rise and total pressure efficiency of the fan can be improved significantly by using the wavy leading-edge bionic blade, while the total pressure efficiency and total pressure rise of the fan can be greatly reduced by using the serrated trailing-edge, serrated trailing-edge and wavy leading-edge bionic blade structure Therefore, in order to ensure that the bionic blade structure does not significantly reduce the aerodynamic perance of the local fan, the fan should be operated as far as possible under the design flow conditions and slightly less than the design flow conditions. 2 Based on LES and combined with numerical analysis of FW-H equation, the noise reduction mechanism of the serrated trailing-edge and wavy leading-edge bionic blade structures on the discrete tonal noise and the turbulent broadband noise of the fan is revealed. It is found that the large-scale spreading vortex shedding at the trailing-edge of the original blade 万方数据 straight trailing-edge is suppressed, and the pressure pulsation intensity of the blade surface is weakened, thus the discrete tonal noise is reduced. The wavy leading-edge structure bionic blade can significantly reduce the pressure pulsation at the leading-edge of the front blades, thus reducing the turbulence broadband noise of the fan. 3 The perance of three kinds of bionic blade structures, such as serrated trailing-edge, wavy leading-edge, serrated trailing-edge and wavy leading-edge was compared and analyzed by numerical simulation.The results show that compared with the original blade structures, the three bionic blade structures investigated in this paper have a certain noise reduction effect without significantly reducing the aerodynamic perance of the local fan. the discrete tonal noise of the fan can be reduced by 2.2 dB、3.8 dB and 5 dB, respectively, and the turbulent broadband noise can be reduced by more than 10 dB. Keywords Mine contra-rotating local fan; Wavy leading-edge; Serrated trailing-edge; Aerodynamic perance; Aerodynamic noise 万方数据 目 录 图清单 .................................................................................................................................. I 表清单 ................................................................................................................................ V 变量注释表 ....................................................................................................................... VI 1 绪论 ............................................................................................................................... 1 1.1 研究背景及意义 ................................................................................................. 1 1.2 轴流通风机的噪声源和噪声类型 ..................................................................... 2 1.3 轴流风机国内外研究现状 ................................................................................. 3 1.4 存在的问题 ....................................................................................................... 10 1.5 主要研究内容 ................................................................................................... 10 2 三维几何模型及数值模拟方法 ................................................................................. 12 2.1 三维几何模型及网格划分 ............................................................................... 12 2.2 流场数值模拟方法 ........................................................................................... 16 2.3 气动声场数值模拟方法 ................................................................................... 21 2.4 本章小结 ........................................................................................................... 23 3 仿生叶片风机的流场及气动性能数值分析 ............................................................. 24 3.1 设计工况下原始叶片和仿生叶片风机的气动性能数值分析 ....................... 24 3.2 设计工况下原始叶片和仿生叶片风机的内流特性数值分析 ....................... 26 3.3 不同工况下原始叶片和仿生叶片风机的气动性能数值分析 ....................... 37 3.4 本章小结 ........................................................................................................... 40 4 前后缘仿生结构叶片对风机气动噪声性能的影响 ................................................. 42 4.1 风机稳态声场特性分析 ................................................................................... 42 4.2 前后缘仿生叶片结构降噪机理分析 ............................................................... 43 4.3 风机流场内部气流压力脉动特性分析 ........................................................... 47 4.4 风机内部气动噪声场分析 ............................................................................... 53 4.5 不同流量工况下局部通风机的气动噪声 ....................................................... 55 4.6 本章小结 ........................................................................................................... 58 5 结论与展望 ................................................................................................................. 59 5.1 结论 ................................................................................................................... 59 5.2 展望 ................................................................................................................... 60 参考文献 作者简历 万方数据 致谢 学位论文数据集 万方数据 Contents List of Figures ................................................................................................................................ I List of Tables ................................................................................................................................. V List of Variables .......................................................................................................................... VI 1 Introduction ............................................................................................................................. 1 1.1 Background and significance of the research .......................................................................................1 1.2 Noise source and type of axial fan .......................................................................................................2 1.3 Research status at home and abroad of axial fan ..................................................................................3 1.4 Existing problems ...............................................................................................................................10 1.5 Main research contents .......................................................................................................................10 2 Three-dimensional geometric model and numerical simulation ......................... 12 2.1 Three-dimensional geometric model and mesh genaration ................................................................12 2.2 Numerical simulation of flow field ....................................................................................................16 2.3 Numerical simulation of aerodynamic acoustics field ...........................................................21 2.4 Chapter summary ...............................................................................................................................23 3 Numerical analysis of flow field and aerodynamic perance of bionic blades fan ... 24 3.1 Numerical analysis of aerodynamic perance of fan with original and bionic blades under design conditions ..........................................................................................................................................24 3.2 Numerical analysis of internal flow characteristics of original and bionic blade fan under design conditions ..........................................................................................................................................26 3.3 Numerical analysis of aerodynamic perance of original and bionic blade fan under the different conditions ..........................................................................................................................................37 3.4 Chapter summary ...............................................................................................................................40 4 Influence of bionic blades with leading and trailing-edge on aerodynamic noise of fan 42 4.1 Analysis of steady acoustic feld characteristics of fan .......................................................................42 4.2 Analysis of noise reduction mechanism of bionic blades ...................................................................43 4.3 Analysis on the pulaing characteristics of air flow in fan flow field ..................................................47 4.4 Analysis of aerodynamic noise field in fan ........................................................................................53 4.5 Aerodynamic noise of local fan under different flow conditions .......................................................55 4.6 Chapter summary ...............................................................................................................................58 万方数据 5 Conclusions and Prospects ................................................................................................... 59 5.1 Conclusions........................................................................................................................................ 59 5.2 Prospects.............................................................................................................................................60 References Author’s Resume Acknowledgements Thesis Data Collection 万方数据 I 图清单 图序号 图名称 页码 图 1.1 对旋局部通风机两级转子处的气动噪声频谱图 2 Fig.1.1 Aerodynamic sound frequency spectrum chart of two rotors with contra-rotating local fan 2 图 1.2 点声源模型示意图 4 Fig.1.2 Schematic diagram of the point sound source model
展开阅读全文