双绳缠绕式提升系统振动与控制研究.pdf

返回 相似 举报
双绳缠绕式提升系统振动与控制研究.pdf_第1页
第1页 / 共159页
双绳缠绕式提升系统振动与控制研究.pdf_第2页
第2页 / 共159页
双绳缠绕式提升系统振动与控制研究.pdf_第3页
第3页 / 共159页
双绳缠绕式提升系统振动与控制研究.pdf_第4页
第4页 / 共159页
双绳缠绕式提升系统振动与控制研究.pdf_第5页
第5页 / 共159页
点击查看更多>>
资源描述:
博士学位论文 双绳缠绕式提升系统振动与控制研究 Study on Vibration and Control of Double-rope in Winding Hoisting System 作 者王国营 导 师肖兴明教授 中国矿业大学 二〇二一年四月 万方数据 学位论文使用授权声明学位论文使用授权声明 本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰 写的学位论文的使用授权按照学校的管理规定处理 作为申请学位的条件之一, 学位论文著作权拥有者须授权所在学校拥有学位 论文的部分使用权,即①学校档案馆和图书馆有权保留学位论文的纸质版和电 子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;②为教学和 科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书 馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国 国家图书馆保存研究生学位论文。 (保密的学位论文在解密后适用本授权书)。 作者签名 导师签名 年 月 日 年 月 日 万方数据 中图分类号 TD53 学校代码 10290 UDC 621 密 级 公开 中国矿业大学 博士学位论文 双绳缠绕式提升系统振动与控制研究 Study on Vibration and Control of Double-rope in Winding Hoisting System 作 者 王国营 导 师 肖兴明 申请学位 工学博士学位 培养单位 机电工程学院 学科专业 机械设计及理论 研究方向 矿山机械 答辩委员会主席 林明星 评 阅 人 二○二一年四月 万方数据 致谢致谢 工作四载,未忘初心,而立之年,辞职攻博。求学四载,钻坚研微。仰望苍 穹,感慨万千。 感谢恩师肖兴明教授,四年之前,初为相识。和蔼可亲,记忆犹新。教学之 风趣,科研之严谨,实践之丰富,为我之楷模。失落鼓励,骄傲劝诫,懈怠之时 明为嗔怪,实为关怀。恩师困难之际,仍不忘我科研之需,关心至深,难以回报。 庚子年初,病毒无情肆虐,席卷华夏。疫情遥遥,恩师刻刻牵挂,幸甚至哉。毕 业之际,不舍离别。 感谢马驰老师科研之帮,润稿之助。为人处世之法,深为学习。感谢蒋玉强 老师实验关怀。感谢程刚教授引荐之恩,挂念之情,科研之助。感谢曹国华教授 授课解惑之道,理论建模之法。 感谢 Northampton 大学 Crespo 博士,释疑解惑,通俗易懂。感谢重庆大学 皮阳军博士,科研之初,建模指导。感谢上海大学丁虎教授指点迷津。感谢南通 大学姚建南博士模型指导。 感谢同门马衍颂博士,武刚刚博士,李坚博士,赵见龙博士,包从望博士, 邓建龙硕士,张高奋硕士,张潇涵硕士,狄潇硕士,宋春阳硕士,史晓泽硕士, 田素智硕士,王凯旋硕士,郑宗晓硕士,杨彬硕士,徐瑞晗硕士,张习硕士,肖 飞硕士, 王政硕士, 李仁硕士等人实验与生活帮助。 虽寥寥数笔, 绝非感情之浅, 只因篇幅之限。 感谢许爱桥舍友谈天说地, 评古论今。 常常阔谈半夜, 未感时晚。 虽为吹侃, 实为理想。 感谢张成爽好友,三年之窗,十年之友。虽一工一学,但交流无阂。非富时 友,交情清纯。孤独时陪伴,失落时开导,困难时鼓励,高兴时欢喜。 感谢父母养育之恩,教导之情。儿时朋伴,已妻贤子慧。吾还孤单影只,父 母非但无责,依然鼓励求学,憧憬希望。 感谢姐姐王娟博士,姐夫刘云龙博士,释疑分忧,引导学术。感谢哥哥,嫂 子时时关心,贴心照顾。 感谢中国矿业大学给予我优渥的环境, 感谢机电工程学院的所有老师和同学 的帮助 万方数据 I 摘摘 要要 随着浅部煤炭资源逐渐消耗殆尽,煤炭矿井朝着更深方向发展。双绳缠绕式 提升机是深部矿井的关键提升装备,其安全、可靠运行对深部煤炭的开发极其重 要。然而,矿井深度的增加会导致提升系统对外部扰动更敏感,易使钢丝绳产生 剧烈振动,导致钢丝绳张力异常波动,严重威胁煤矿安全生产。因此,解决外部 扰动对矿井提升系统的振动与张力波动的影响成为亟待解决的关键问题。 本文以 深部矿井所使用的双绳缠绕式提升机为研究对象, 针对天轮摆动和刚性罐道扰动 的提升系统的振动与控制进行了以下研究 (1)构建了双绳缠绕式提升系统的动力学模型。基于连续介质的有限形变 与分布参数理论,得到双绳缠绕式提升系统的动能、势能、虚功及钢丝绳张力描 述。利用广义 Hamilton 原理建立了双绳缠绕式提升系统动力学分布参数模型。 在双绳缠绕式提升系统模型中,考虑了提升绳的横-纵向耦合振动,卷筒与提升 绳缠绕,悬绳与垂绳在天轮处耦合,两根钢丝绳与提升容器间耦合,刚性罐道与 容器的相互作用。结合变积分范围的 Leibnitz 定律与分部积分法,同时应用时间 和边界条件得到双绳缠绕式提升系统横-纵耦合无限维偏微分运动方程。基于 Galerkin方法将双绳缠绕式提升系统难以求解的无限维偏微分运动方程离散为易 于求解的有限维常微分方程。 利用缠绕式提升系统实验平台验证了双绳缠绕式提 升系统动力学模型的有效性。 (2)针对天轮摆动导致提升系统钢丝绳的振动,构建了天轮摆动下的双绳 缠绕式提升系统振动方程。 将天轮摆动看作双绳缠绕式提升系统悬绳末端和垂绳 初端的边界激励。利用 Hamilton 原理和多项式插值法得到天轮摆动下的双绳缠 绕式提升系统偏微分运动方程。基于时间域归一法和 Galerkin 方法,得到提升系 统常微分方程。 通过数值仿真与实验方式分析了天轮摆动振幅与相位对双绳缠绕 式提升系统钢丝绳振动和张力的影响。 (3)针对刚性罐道弯曲和倾斜导致提升系统钢丝绳的振动,建立了刚性罐 道扰动下的双绳缠绕式提升系统振动方程。 将刚性罐道弯曲和倾斜激励转化为双 绳缠绕式提升系统垂绳末端的横向和纵向激励。基于 Hamilton 原理和 Galerkin 方法,得到了刚性罐道扰动下的双绳缠绕式提升系统振动方程。通过仿真与实验 分析了刚性罐道弯曲与倾斜对双绳缠绕式提升系统垂绳振动和张力的影响。 (4)针对天轮摆动、刚性罐道弯曲和倾斜导致的双绳缠绕式提升系统张力 不平衡问题,提出了在提升绳末端安装磁流变减振器,并根据磁流变减振器的测 试性能构建了双绳缠绕式提升系统磁流变减振器的动力学模型。基于 Hamilton 原理和 Galerkin 方法建立了含有磁流变减振器的天轮摆动和刚性罐道扰动的双 绳缠绕式提升系统控制方程。 通过仿真和实验验证了基于磁流变减振器的天轮摆 万方数据 II 动和刚性罐道弯曲及倾斜的双绳缠绕式提升系统控制方法的有效性。 设计了自适 应滑模控制器,得到了连续可调的磁流变阻尼力,分析了基于阻尼连续可调磁流 变减振器的提升系统钢丝绳间张力不平衡的控制方法。 该论文有图 90 幅,表 9 个,参考文献 153 篇。 关键词关键词双绳提升系统;动力学模型;外部扰动;磁流变减振器;张力控制 万方数据 III Abstract With the gradual exhaustion of shallow coal resources, coal mine is developing to increasing depth. The double-rope winding hoist is the key hoisting equipment for deep mines, and its safe and reliable operation is extremely important to the development of deep coal. However, the increase of mine depth will cause the hoisting system to be more sensitive to external disturbances, and it is easy to cause the hoisting rope to produce greater vibration, resulting in abnormal fluctuations in the hoisting rope tension, which seriously threatens the safety of coal mine production. Therefore, the vibration and tension fluctuation of the mine hoisting system under external disturbance has become a key problem to be solved urgently. This paper takes the double-rope winding hoist used in ultra deep mines as the research object, and conducts the following research on the vibration and control of the hoisting system under the disturbance of the head sheave swing, as well as the curvature and perpendicularity of rigid guides 1 The dynamic model of a double-rope winding hoisting system is established. Based on the finite deation and distributed parameter theory of the continuous medium, the kinetic energy, potential energy, virtual work and wire rope tension of the double-rope winding hoisting system are described. Based on the generalized Hamilton principle, the dynamic distribution parameter model of the double-rope winding hoisting system is established. In the double-rope winding hoisting system model, the horizontal-longitudinal coupled vibration of the hoisting rope, the drum is wound with the hoisting rope, the suspension rope and the vertical rope are coupled at the head sheave, the two hoisting ropes are coupled with the hoisting conveyance, and the interaction between the guides and conveyance are considered. Combining the Leibnitzs law with variable integration range and the partial integration , and applying time and boundary conditions, the transverse-longitudinal coupled partial differential motion equations of the double-rope winding hoisting system are obtained. Based on the Galerkin , the infinite-dimensional partial differential motion equations that are difficult to be solved are discretized into finite-dimensional ordinary differential equations that are easy to solve in the double-rope winding hoisting system. The experimental plat of the winding hoisting system has shown the effectiveness of the dynamic model of the double-rope winding hoisting system. 2 Aiming at the vibration of the hoisting rope under the swing of the head 万方数据 IV sheave, the vibration equation of the double-rope winding hoisting system under the swing of the head sheave is constructed. The swing of the head sheave is regarded as the boundary excitation between the end of the suspension rope and the initial end of the vertial rope of the double-rope winding hoisting system. Using Hamilton principle and polynomial interpolation , the partial differential motion equations of the double-rope winding hoisting system under the swing of the head sheave are obtained. Based on the time domain normalization and Galerkin , the ordinary differential equations of the hoisting system are obtained. The influence of the amplitude and phase of the head sheave swing on the vibration and tension of the hoisting rope of the double-rope winding hoisting system is analyzed through numerical simulation and experiment. 3 Aiming at the vibration of the rope of the hoisting system with the curvature or perpendicularity of the rigid guide, the vibration equations of the double-rope winding hoisting system under the disturbance of the rigid guide are established. The curvature or perpendicularity failure of the rigid guide is converted into the transverse and longitudinal excitation at the ends of the vertical rope of the double-rope winding hoisting system. Based on the Hamilton principle and Galerkin , the vibration equations of the double-rope winding hoisting system under the disturbance of the rigid guide are obtained. The effects of curvature or perpendicularity of the rigid guide on the vibrations and tensions of the vertical rope in the double-rope winding hoisting system are analyzed through simulation and experiment. 4 In view of the tension inconsistency of the double-rope winding hoisting system under the swing of the head sheave, curvature or perpendicularity of the rigid guide, it is proposed to install a magnetorheological damper at the end of the hoisting rope to control it. According to the magnetorheological damper of the test perance, the dynamic model of the magnetorheological damper of the double-rope winding hoisting system is constructed. Based on the Hamilton principle and Galerkin , the control equations of the double-rope winding hoisting system with magnetorheological damper under the head sheave and rigid guide disturbance are established. Simulations and experiments show the effectiveness of the control of the double-rope winding hoisting system based on the magnetorheological damper for the swing of the head sheave, curvature or perpendicularity of the rigid guide. An adaptive sliding mode controller is designed to obtain a continuously adjustable magnetorheological damping force, and the tension 万方数据 V balance control problem of the hoisting system based on the damping continuously adjustable magnetorheological damper is analyzed. The dissertation has 90figures, 9 tables, and 153 references Keywords double-rope hoisting system; dynamics modeling; external disturbance; magnetorheological damper; tension control 万方数据 VI 目目 录录 摘摘 要要 ........................................................................................................................ I I 目目 录录 ...................................................................................................................... VIVI 图清单图清单 ........................................................................................................................ X X 表清单表清单 .................................................................................................................... XVIXVI 变量注释表变量注释表 .......................................................................................................... XVIIXVII 1 1 绪论绪论 ........................................................................................................................ 1 1 1.1 课题来源 ........................................................ 1 1.2 选题背景及意义 .................................................. 1 1.3 国内外研究现状 .................................................. 4 1.4 研究内容与技术路线 ............................................. 14 2 2 双绳缠绕式提升系统分布参数模型及实验验证双绳缠绕式提升系统分布参数模型及实验验证 .............................................. 1616 2.1 引言 ........................................................... 16 2.2 双绳缠绕式提升系统分布参数模型建立 ............................. 17 2.3 双绳缠绕式提升系统分布参数模型离散化 ........................... 26 2.4 双绳缠绕式提升系统分布参数模型实验验证 ......................... 29 2.5 本章小结 ....................................................... 40 3 3 天轮摆动双绳缠绕式提升系统振动特性研究天轮摆动双绳缠绕式提升系统振动特性研究 .................................................. 4141 3.1 引言 ........................................................... 41 3.2 天轮摆动双绳缠绕式提升系统振动模型 ............................. 41 3.3 天轮摆动双绳缠绕式提升系统振动仿真分析 ......................... 47 3.4 天轮摆动双绳缠绕式提升系统振动实验验证 ......................... 54 3.5 本章小结 ....................................................... 57 4 4 刚性罐道扰动双绳缠刚性罐道扰动双绳缠绕式提升系统振动特性研究绕式提升系统振动特性研究............................................ 5858 4.1 引言 ........................................................... 58 4.2 刚性罐道扰动双绳缠绕式提升系统振动模型 ......................... 58 4.3 刚性罐道扰动双绳缠绕式提升系统振动仿真分析 ..................... 63 4.4 刚性罐道扰动双绳缠绕式提升系统振动实验验证 ..................... 69 4.5 本章小结 ....................................................... 76 5 5 基于磁流变减振器双绳缠绕式提升基于磁流变减振器双绳缠绕式提升系统张力控制研究系统张力控制研究 .................................... 7777 5.1 引言 ........................................................... 77 万方数据 VII 5.2 磁流变减振器力学特性与动力学建模 ............................... 77 5.3 基于磁流变减振器天轮摆动提升绳张力控制 ......................... 83 5.4 基于磁流变减振器刚性罐道扰动提升绳张力控制 ..................... 88 5.5 基于磁流变减振器提升系统张力控制实验验证 ....................... 96 5.6 基于阻尼连续可调磁流变减振器提升绳张力控制 .................... 100 5.7 本章小结 ...................................................... 105 6 6 总结与展望总结与展望 ........................................................................................................ 106106 6.1 论文主要结论 .................................................. 106 6.2 论文创新点 .................................................... 108 6.3 研究展望 ...................................................... 108 参考文献参考文献 ................................................................................................................ 109109 附录附录 1 1 .................................................................................................................... 120120 附录附录 2 2 .................................................................................................................... 122122 附录附录 3 3 .................................................................................................................... 125125 附录附录 4 4 .................................................................................................................... 127127 附录附录 5 5 .................................................................................................................... 130130 作者简历作者简历 ................................................................................................................ 132132 学位论文原创性声明学位论文原创性声明 ............................................................................................ 134134 学位论文数据集学位论文数据集 .................................................................................................... 135135 万方数据 VIII Contents Abstract ...................................................................................................................... III Contents .................................................................................................................. VIII 1 Introduction ............................................................................................................... 1 1.1 Subject Source ......................................................................................................... 1 1.2 Background and Significance .................................................................................. 1 1.3 Domestic and Foreign Research Status .................................................................... 4 1.4 Research Contents and Technical Strategy ............................................................ 14 2 Distributed Parameter Model and Experimental Verification of Double-rope Winding Hoisting System .......................................................................................... 16 2.1 Introduction ............................................................................................................ 16 2.2 Distributed Parameter Modeling of Double-rope Winding Hoisting System ........ 17 2.3 Distributed Parameter Model Discretization of Double-rope Winding Hoisting System .......................................................................................................................... 26 2.4 Experimental Verification of Distributed Parameter Model of Double-rope Winding Hoisting System ............................................................................................ 29 2.5 Summary ................................................................................................................ 40 3 Vibration Behaviours of D
展开阅读全文

资源标签

最新标签

长按识别或保存二维码,关注学链未来公众号

copyright@ 2019-2020“矿业文库”网

矿业文库合伙人QQ群 30735420