资源描述:
分类号 密级 U D C 编号201731603060 河北工业大学硕士学位论文 注浆注浆微型钢管桩的几何参数及力学性能微型钢管桩的几何参数及力学性能 试验研究试验研究 论 文 作 者 司 雨 学 生 类 别 全日制 专业学位类别 工程硕士 领 域 名 称 建筑与土木工程 指 导 教 师 肖成志 职 称 教 授 万方数据 万方数据 Dissertation ted to Hebei University of Technology for The Master Degree of Construction and civil engineering EXPERIMENTAL STUDY ON GEOMETRIC PARAMETERS AND MECHANICAL PROPERTIES OF GROUTED MICRO-STEEL-PIPE-PILES By Si Yu Supervisor Prof. Xiao Chengzhi 万方数据 万方数据 原创性声明原创性声明 本人郑重声明所呈交的学位论文,是本人在导师指导下,进行研究工作所取得 的成果。除文中已经注明引用的内容外,本学位论文不包含任何他人或集体已经发表 的作品内容,也不包含本人为获得其他学位而使用过的材料。对本论文所涉及的研究 工作做出贡献的其他个人或集体,均已在文中以明确方式标明。本学位论文原创性声 明的法律责任由本人承担。 学位论文作者签名 日期2020.05.26 关于学位论文版权使用授权的说明关于学位论文版权使用授权的说明 本人完全了解河北工业大学关于收集、保存、使用学位论文的以下规定学校有 权采用影印、缩印、扫描、数字化或其它手段保存论文;学校有权提供本学位论文全 文或者部分内容的阅览服务;学校有权将学位论文的全部或部分内容编入有关数据库 进行检索、交流;学校有权向国家有关部门或者机构送交论文的复印件和电子版。 (保密的学位论文在解密后适用本授权说明) 学位论文作者签名 日期2020.05.26 导师签名 日期2020.05.26 万方数据 万方数据 I 摘 要 随着我国公路基础设施建设的发展,尤其是一些贫困落后地区的道路桥梁基础建 设,在国家“精准扶贫”政策引导下取得了长足发展。其中中小跨径桥梁的建设不容 忽视, 想要稳步加快公路桥梁建设, 迫切需要一种因地制宜且经济适用型的基础技术。 注浆微型钢管桩因其造价低、 施工快、 无污染、 噪音小等优点, 受到越来越多的欢迎, 广泛应用于边坡防护、基础托换、基坑支护等工程上,然而微型钢管桩作为桥梁基础 的使用相对较少,本文通过分析注浆微型钢管桩的适宜地质条件,总结提出其具体适 用范围并对注浆微型钢管桩开展力学性能试验研究,以期为工程实践提供技术指导。 制备注浆微型钢管桩试件,通过 21 个室内静定轴压试验和 15 个抗弯三分点加载 试验,综合考虑钢管直径 d 和钢管壁厚 t、桩长 H、浆体水灰比、钢管表面布孔直径 r 和间距 s 等因素对注浆微型钢管桩承载、变形和破坏模式的影响。 轴压试验结果表明钢管直径 d 和壁厚 t 是影响注浆微型钢管桩轴向极限荷载的 主要因素,桩径 D 相同时,随着钢管直径和壁厚增加,破坏模式由脆性破坏向延性破 坏发展;增加微型钢管桩试样长度或注浆体水灰比,其轴向极限荷载呈减少趋势,当 钢管直径增至 0.59≤d/D≤0.72 时,试验桩长、注浆水灰比和钢管表面布孔形式对轴 向极限荷载的影响较小,注浆微型钢管桩轴压破坏标准以钢管屈服为准。 抗弯试验结果表明钢管直径和壁厚对微型钢管桩体抗弯特性影响显著,当钢管 直径增至 0.59≤d/D≤0.72 时,浆体水灰比在 0.450.75 间变化时对桩体抗弯极限荷载 影响较小,钢管表面布孔形式对抗弯极限荷载的影响较小,且抗弯加载至 0.8 倍抗弯 极限荷载时钢管屈服,桩体呈现明显的延性特征,注浆微型钢管桩体抗弯破坏标准以 外包浆体破坏为准。 建议实践中微型钢管桩设计时钢管直径与桩径比以 0.59≤d/D≤0.72 为宜。 进而,运用弹塑性力学中厚壁圆筒理论分析了注浆微型钢管桩内部钢管的受力情 况。结果表明在弹性状态下使用拉梅公式计算钢管内外表面的压力大小,与试验中 实测值较为接近,验证了其试验的有效性,并提出了相应的计算公式。 关键词关键词注浆微型钢管桩;抗压试验;抗弯试验;理论计算;力学性能 万方数据 II ABSTRACT With the development of highway infrastructure construction in China, especially in some poor and backward areas, great progress has been made under the guidance of the national “precision of poverty alleviation“ policy. The construction of medium and small span Bridges should not be ignored. In order to speed up the construction of roads and bridges steadily, A local measure and an economical and applicable basic technology is urgently needed. Grouted micro-steel-pipe-piles are widely used in slope protection, foundation underpinning and foundation pit supporting projects because of their low cost, fast construction, pollution-free and low noise. However, they are seldom used as bridge foundation. In this paper, through geological condition of grouted micro-steel-pipe-piles to propose specific scope and the mechanical test of grouted micro-steel-pipe-piles, some guidance is provided for practical engineering technology. Prepare the grouted micro-steel-pipe-piles, through the static and fixed axial compression tests for 21 grouted micro-steel-pipe-piles and flexural loading test for 15 grouted micro-steel-pipe-piles, the effect of diameter d and wall thickness t of steel pipe, steel pipe, length of pile specimen H, water cement ratio of slurry, diameter r and spacing s of grouting holes on the flexural bearing capacity, deation and failure properties of grouted micro-steel-pipe-piles are comprehensively analyzed. The results of axial compression tests showed that diameter d and wall thickness t of steel pipe play a dominant role in axial bearing capacity. When pile diameter D is the same, with the increase of diameter and wall thickness of steel pipe, and the failure mode of grouted micro-steel-pipe-piles shifts from brittle failure to ductile fracture. To increase length of grouted micro-steel-pipe-piles specimen or water-cement ratio results in the decrease of axial ultimate bearing capacity, however, when ratio of diameter of steel pipe to diameter of grouted micro-steel-pipe-piles, d/D, increase and fall in the range from 0.59 to 0.72, length of grouted micro-steel-pipe-piles specimen, water-cement ratio and layout of hole associated with diameter and spacing do not significantly affect the axial ultimate bearing capacity of grouted micro-steel-pipe-piles. The standard of axial compression failure of grouting micro-steel-pipe-piles is based on the yield of steel pipe. 万方数据 III The flexural loading test results showed that for the same diameter of piles body the diameter and wall thickness of steel pipe affected remarkably the ultimate flexural load of grouted micro-steel-pipe-piles. When the diameter of steel pipe increases and falls into 0.59d/D≤0.72, change of grouting water cement ratio from 0.45 to 0.75 and layout of diameters and spacing of grouting holes will not influence significantly the ultimate flexural load of grouted micro-steel-pipe-piles. And the steel pipe at mid-span begins to yield when the applied load is about 0.8 times of the ultimate load, and grouted micro-steel-pipe-piles exhibit well extensible perance. It can be determined that the failure standard for micro-piles is the failure of outside slurry of piles. Herein, the reasonable range of the ratio of the diameter of the steel pipe to the diameter of the pile is 0.59≤d/D≤0.72. Further, apply thick-walled cylinder theory of elastic-plastic mechanics to analyze the stress of steel pipe in grouted micro-steel-pipe-piles. The results show that the pressure on the inner and outer surface of steel pipe calculated by Lam ula under elastic state is close to the measured value, which verifies the effectiveness of test for grouted micro-steel-pipe-pile, and the corresponding calculation ula is put forward. Key words Grouted micro-steel-pipe-piles; Axial loading test; Flexural test; Theoretical calculation; Mechanical Properties 万方数据 IV 目 录 第一章 绪论 ...................................................................................................................... - 1 - 1.1 本文的研究背景与意义 ......................................................................................- 1 - 1.1.1 研究背景 .................................................................................................. - 1 - 1.1.2 研究意义 .................................................................................................. - 2 - 1.2 桥梁基础介绍 ......................................................................................................- 3 - 1.3 微型钢管桩起源与发展 ......................................................................................- 5 - 1.4 国内外研究现状及存在问题 ..............................................................................- 7 - 1.4.1 国内外研究现状 ...................................................................................... - 7 - 1.4.2 研究中存在问题 ..................................................................................... - 10 - 1.5 本文的研究内容与方法 .................................................................................... - 11 - 1.6 本文的技术路线 ................................................................................................ - 11 - 第二章 微型钢管桩的作用机理及适用地质 ................................................................. - 13 - 2.1 引言 .................................................................................................................... - 13 - 2.2 微型钢管桩的分类 ............................................................................................ - 13 - 2.2.1 边坡防护 ................................................................................................. - 13 - 2.2.2 托换加固 ................................................................................................. - 15 - 2.2.3 基坑支护 ................................................................................................. - 16 - 2.3 注浆技术 ............................................................................................................ - 18 - 2.3.1 静压注浆 ................................................................................................. - 18 - 2.3.2 高压喷射注浆 ......................................................................................... - 18 - 2.3.3 注浆技术的适用地层 ............................................................................. - 19 - 2.4 微型钢管桩实例分析 ........................................................................................ - 19 - 2.5 微型钢管桩桥梁基础 ........................................................................................ - 21 - 2.5.1 微型钢管桩桥梁基础的适用性 ............................................................. - 21 - 2.5.2 承德地区桥梁基础 ................................................................................. - 22 - 2.5.3 施工方法 ................................................................................................. - 22 - 2.6 本章总结 ............................................................................................................ - 25 - 万方数据 V 第三章 微型钢管桩桩体室内模型试验方案和试件制备 ............................................. - 27 - 3.1 引言 .................................................................................................................... - 27 - 3.2 试验方法与目的 ................................................................................................ - 27 - 3.2.1 抗压性能试验 ......................................................................................... - 27 - 3.2.2 抗弯性能试验 ......................................................................................... - 28 - 3.3 试件设计 ............................................................................................................ - 29 - 3.3.1 试件制备模具 ......................................................................................... - 29 - 3.3.2 试件材料 ................................................................................................. - 30 - 3.3.3 试件制作 ................................................................................................. - 31 - 3.4 试件加载与测量方案 ........................................................................................ - 35 - 3.4.1 试件轴压加载与量测方法 ..................................................................... - 35 - 3.4.2 试件抗弯加载与量测方法 ..................................................................... - 36 - 3.4.3 标准水泥浆试块加载测量 ..................................................................... - 37 - 3.5 本章总结 ............................................................................................................ - 38 - 第四章 注浆微型钢管桩桩体轴向承载特性试验分析 ................................................. - 39 - 4.1 引言 .................................................................................................................... - 39 - 4.2 试验加载过程和现象 ........................................................................................ - 39 - 4.3 试验结果分析 .................................................................................................... - 42 - 4.3.1 注浆微型钢管桩钢管直径和壁厚对轴向承载特性影响 ..................... - 42 - 4.3.2 注浆微型钢管桩试件高度对轴向承载特性影响 ................................. - 47 - 4.3.3 注浆微型钢管桩浆液水灰比对轴向承载特性影响 ............................. - 48 - 4.3.4 注浆微型钢管桩钢管表面布孔对轴向承载特性影响 ......................... - 49 - 4.3.5 注浆微型钢管桩加载对钢管和外包浆体应变的影响 ......................... - 51 - 4.4 本章小结 ............................................................................................................ - 52 - 第五章 注浆微型钢管桩桩体抗弯承载特性试验分析 ................................................. - 53 - 5.1 引言 .................................................................................................................... - 53 - 5.2 试验加载过程和现象 ........................................................................................ - 53 - 5.3 试验结果分析 .................................................................................................... - 56 - 5.3.1 钢管直径和壁厚对桩体抗弯承载特性影响 ......................................... - 56 - 5.3.2 d/D 对微型钢管桩抗弯承载特性影响 ................................................... - 57 - 5.3.3 注浆体水灰比对微型钢管桩抗弯承载特性影响 ................................. - 59 - 5.3.4 钢管注浆布孔形式对微型钢管桩抗弯承载特性影响 ......................... - 60 - 万方数据 VI 5.3.5 微型钢管桩抗弯荷载-钢管纵向应变的曲线分析 ................................ - 61 - 5.3.6 微型钢管桩体外包浆体和钢管受力分析 ............................................. - 63 - 5.4 本章小结 ............................................................................................................ - 66 - 第六章 注浆微型钢管桩桩体内力理论分析 ................................................................. - 69 - 6.1 引言 .................................................................................................................... - 69 - 6.2 内压作用下的微型钢管桩桩体内钢管受力分析 ............................................ - 69 - 6.2.1 弹性分析 ................................................................................................. - 70 - 6.2.2 弹塑性分析 ............................................................................................. - 71 - 6.3 内压作用下的注浆微型钢管桩外包层受力分析 ............................................ - 74 - 6.4 内外压作用下的注浆微型钢管桩钢管受力分析 ............................................ - 77 - 6.5 钢管直径与成桩直径比值 d/D 的分析 ............................................................ - 78 - 6.6 本章小结 ............................................................................................................ - 80 - 第七章 结论与展望 ......................................................................................................... - 81 - 7.1 结论 .................................................................................................................... - 81 - 7.2 展望 .................................................................................................................... - 82 - 参考文献 ........................................................................................................................... - 83 - 攻读学位期间所取得的相关科研成果 ........................................................................... - 87 - 致谢 ................................................................................................................................... - 87 - 万方数据 河北工业大学硕士学位论文 - 1 - 第一章 绪论 1.1 本文的研究背景与意义 1.1.1 研究背景研究背景 近年来,随着我国经济建设的飞速发展,基础交通的建设也取得了不错的发展, 对此的关注度也是越来越高。全国公路桥梁达 77.92 万座,其中中小跨径(是指单孔 跨径在 540 m、多孔跨径总长在 8100 m 范围内的桥梁)普通桥梁占比接近 90, 这些成就标志着我国不仅已成为世界桥梁大国,而且也代表我国桥梁建设技术已经进 入世界先进水平行列,且桥梁工程在我国的经济建设和交通运输上具有重要地位。因 此,桥梁结构及其桥梁基础的稳定性与安全性正日益引起关注,而桥梁基础设计是确 保桥梁安全重要保障。 我国幅员辽阔, 由此出现了地质条件差, 施工困难, 速度慢, 经济成本高的问题, 建设中小跨径桥梁常采用的传统地基处理,例如灌注桩、预制桩等,已不能完全满足 当下各方需求,针对部分地区特殊的地质条件,亟需采用更加经济合理的桥梁基础型 式。因此,围绕桥梁尤其是中小跨径桥梁基础的研究具有重要的意义和现实需要。 大管棚超前支护是隧道施工中穿越软弱破碎围岩的一种有效的加固施工方法。其 受力原理是 大管棚超前支护一般多在隧道洞口段施工时采用, 它是在隧道开挖之前, 沿隧道开挖断面外轮廓,以一定间隔与隧道平行钻孔、插入钢管,再从插入的钢管内 压注充填水泥浆,来增加钢管外周围岩的抗剪强度,并使钢管与围岩一体化,形成由 钢管和围岩构成的棚架体系[1],如图 1.1。 依据管棚支护的原理,结合近年来钢管桩的大量使用,注浆微型钢管桩为解决施 工困难、 地质条件差等问题, 成为一种新型基础支护结构, 在
展开阅读全文