采煤机与刮板输送机协同位姿监测理论与方法研究.pdf

返回 相似 举报
采煤机与刮板输送机协同位姿监测理论与方法研究.pdf_第1页
第1页 / 共114页
采煤机与刮板输送机协同位姿监测理论与方法研究.pdf_第2页
第2页 / 共114页
采煤机与刮板输送机协同位姿监测理论与方法研究.pdf_第3页
第3页 / 共114页
采煤机与刮板输送机协同位姿监测理论与方法研究.pdf_第4页
第4页 / 共114页
采煤机与刮板输送机协同位姿监测理论与方法研究.pdf_第5页
第5页 / 共114页
点击查看更多>>
资源描述:
万方数据 万方数据 太原理工大学硕士研究生学位论文 I 采煤机与刮板输送机协同位姿监测理论与方法研究 摘 要 随着我国科技的快速发展与能源生产、消费理念的转型升级,煤炭开 采方式不断向绿色智能方向发展,采煤机与刮板输送机都是综采工作面的 重要设备,且两者具有紧密的协同运动关系,实现采煤机与刮板输送机位 姿的实时准确监测是保证采煤机与刮板输送机能安全高效生产的重要条 件。当前采煤机与刮板输送机的监测主要针对单机的姿态与位置研究,将 采煤机和刮板输送机进行有效的协同监测的研究很少,且已有研究主要还 是集中在理想的水平工作面条件下,没有考虑复杂工况下底板不平整的井 下实际情况,对刮板输送机形态的研究忽略了地形条件的情况。 本文分析了采煤机与刮板输送机的协同运动关系,建立采煤机与刮板 输送机协同监测方法,利用捷联惯导系统建立采煤机与刮板输送机协同监 测的物理传感体系,对采煤机在刮板输送机上运动时的形态耦合关系进行 分析,建立了基于采煤机运行路径中姿态与位置信息的刮板输送机三维空 间形态计算方法,并搭建了采煤机与刮板输送机协同试验平台进行试验验 证,利用滚动预测方法与两种机器学习算法结合对刮板输送机的工作形态 进行预测。 主要研究内容和成果如下 (1)对采煤机与刮板输送机协同运动时的原理、接触关系进行了研 究,利用采煤机上搭载的捷联惯导系统解算得到了采煤机在刮板输送机上 万方数据 太原理工大学硕士研究生学位论文 II 运动时的俯仰角、航向角与采煤机在刮板输送机上的位置。 (2)分析采煤机与刮板输送机中部槽的实时形状耦合关系,建立了 基于采煤机运行轨迹的刮板输送机竖直面形态计算模型,通过检测刮板输 送机部分中部槽的俯仰角作为先验信息,滚动计算出采煤机运行过程中所 经过各节中部槽的俯仰角,得到刮板输送机在竖直工作面的形态。可实时 准确地掌握刮板输送机竖直面的工作形态,通过调节滚筒高度控制刮板输 送机形态,使其保持正常工作状态,使采煤机可以在刮板输送机上正常行 走。 (3)构建了刮板输送机水平面形态计算方法,可计算出刮板输送机 各中部槽的航向角,得到水平面刮板输送机的工作形态,与竖直面刮板输 送机形态计算法结合,可得到三维空间刮板输送机形态。实时得到刮板输 送机水平面形态,可为液压支架的推移机构的推移距离提供依据,保证综 采工作面的直线度。 (4)通过使用基于滚动预测方法的支持向量机与极限学习机模型进 行刮板输送机形态的预测,并对两者的预测结果进行比较。刮板输送机的 竖直面形态由采煤机下滚筒截割形成的底板决定,预测出刮板输送机形态 可为采煤机下滚筒截割路径的规划提供位置依据,保证刮板输送机在竖直 面有适宜的工作形态。 关键词采煤机,刮板输送机,协同监测,捷联惯导系统,机器学习 万方数据 太原理工大学硕士研究生学位论文 III RESEARCH ON THEORY AND OF COORDINATE POSITION MONITORING FOR SHEARER AND SCRAPER CONVEYOR ABSTRACT With the rapid development of Chinas technology and the transation and upgrading of energy production and consumption concepts, coal mining s continue to develop in the direction of green intelligence. Shearer and scraper conveyors are important equipments for fully mechanized mining face, and the two are closely The synergistic motion relationship, real-time accurate monitoring of the position of the shearer and scraper conveyor is an important condition to ensure the safe and efficient production of the shearer and scraper conveyor. The current monitoring of shearer and scraper conveyor is mainly for the attitude and position of single machine. There are few studies on effective collaborative monitoring of shearer and scraper conveyor, and the existing research is mainly focused on the ideal level. Under the working face conditions, the actual situation of the underground under the complicated working conditions is not considered. The research on the shape of the scraper conveyor ignores the terrain conditions. The cooperative motion relationship between shearer and scraper conveyor was analyzed, and the cooperative monitoring of shearer and scraper conveyor was established. The physical sensing system of coal mining machine and scraper conveyor was established by using strapdown inertial navigation system. The morphological coupling relationship of the shearer on the scraper 万方数据 太原理工大学硕士研究生学位论文 IV conveyor was analyzed. The three-dimensional spatial shape calculation of the scraper conveyor based on the attitude and position ination of the shearers running path was established, and the shearer was built. The scraper conveyor cooperated with the test plat for test verification, and used the rolling prediction combined with two machine learning algorithms to predict the working mode of the scraper conveyor. The main research contents and results are as follows 1 The principle and contact relationship of shearer and scraper conveyor in cooperative motion were studied. The pitch angle, heading angle and the position of shearer on scraper conveyor were obtained by solving strapdown inertial navigation system on shearer. 2 The real-time shape coupling relationship between the shearer and the middle slot of the scraper conveyor was analyzed, and the vertical plane shape calculation model of the scraper conveyor based on the running track of the shearer was established. The pitch angle of the middle groove of the scraper conveyor was detected as The prior ination can be used to calculate the pitch angle of the central trough passing through the sections of the shearer during the operation of the shearer, and obtain the shape of the scraper conveyor on the vertical working surface. The working mode of the vertical surface of the scraper conveyor can be accurately grasped in real time, so that the scraper conveyor can maintain a normal working state, so that the shearer can normally walk on the scraper conveyor. 3 The for calculating the horizontal plane shape of the scraper conveyor can be calculated, and the heading angle of each middle slot of the scraper conveyor can be calculated, and the working mode of the horizontal plane scraper conveyor was obtained, which was combined with the vertical plane scraper conveyor shape calculation . A three-dimensional space scraper conveyor was available. The real-time shape of the scraper conveyor can be 万方数据 太原理工大学硕士研究生学位论文 V used to provide a basis for the displacement distance of the hydraulic supports moving mechanism to ensure the straightness of the fully mechanized mining face. 4 The shape prediction of scraper conveyor was carried out by using support vector machine and extreme learning machine models based on rolling prediction , and the prediction results were compared. The vertical surface shape of scraper conveyor was determined by the bottom plate ed by the cutting of shearers lower drum. Predicting the shape of scraper conveyor can provide position basis for the planning of cutting path of shearers lower drum and ensure that scraper conveyor had suitable working on the vertical surface. KEY WORDS shearer, scraper conveyor, collaborative monitoring, strapdown inertial navigation system, machine learning 万方数据 太原理工大学硕士研究生学位论文 VI 万方数据 太原理工大学硕士研究生学位论文 VII 目录 第一章 绪论 .............................................................................................................................. 1 1.1 课题来源 ................................................................................................................. 1 1.2 引言 ......................................................................................................................... 1 1.3 研究背景、目的与意义 ......................................................................................... 3 1.3.1 研究背景 ...................................................................................................... 3 1.3.2 研究目的 ...................................................................................................... 4 1.3.3 研究意义 ...................................................................................................... 5 1.4 国内外研究动态 ..................................................................................................... 5 1.4.1 采煤机位置与姿态的研究 .......................................................................... 5 1.4.2 刮板输送机形态监测研究现状 .................................................................. 9 1.4.3 采煤机与刮板输送机协同监测研究 ........................................................ 10 1.4.4 目前研究存在的问题 ................................................................................ 11 1.5 主要研究内容 ....................................................................................................... 11 1.6 技术路线 ............................................................................................................... 12 1.7 本章小结 ............................................................................................................... 12 第二章 采煤机与刮板输送机协同监测方法 ........................................................................ 15 2.1 引言 ....................................................................................................................... 15 2.2 采煤机的主要结构与工作原理 ........................................................................... 15 2.2.1 采煤机的主要结构 .................................................................................... 15 2.2.2 采煤机的工作原理 .................................................................................... 17 2.3 刮板输送机的主要结构与工作原理 ................................................................... 18 2.3.1 刮板输送机的主要结构 ............................................................................ 18 2.3.2 刮板输送机的工作原理 ............................................................................ 18 2.4 采煤机与刮板输送机协同监测方法 ................................................................... 19 万方数据 太原理工大学硕士研究生学位论文 VIII 2.4.1 采煤机与刮板输送机协同工作过程 ........................................................ 19 2.4.2 采煤机与刮板输送机协同监测方法概述 ................................................ 21 2.4.3 物理传感器体系的建立方法 .................................................................... 22 2.4.4 采煤机与刮板输送机中部槽接触形式分析 ............................................ 25 2.5 本章小结 ............................................................................................................... 26 第三章 基于采煤机运行轨迹的刮板输送机竖直面形态监测方法 .................................... 29 3.1 引言 ....................................................................................................................... 29 3.2 采煤机运动轨迹解算方法研究 ........................................................................... 29 3.2.1 概述 ............................................................................................................ 29 3.2.2 采煤机坐标系的建立与转换 .................................................................... 29 3.2.3 采煤机姿态与位置解算 ............................................................................ 33 3.3 基于采煤机运行轨迹的刮板输送机竖直面形态解算方法 ............................... 35 3.3.1 刮板输送机竖直面形态解算方法分析 .................................................... 35 3.3.2 刮板输送机竖直面形态解算模型 ............................................................ 37 3.4 刮板输送机竖直面形态控制 ............................................................................... 39 3.5 本章小结 ............................................................................................................... 41 第四章 基于采煤机运行轨迹的刮板输送机水平面形态监测方法 .................................... 43 4.1 引言 ....................................................................................................................... 43 4.2 采煤机与刮板输送机协同位姿测量方法 ........................................................... 43 4.3 基于采煤机运行轨迹的刮板输送机水平面形计算模型 ................................... 46 4.3.1 刮板输送机水平面形态计算方法分析 .................................................... 46 4.3.2 刮板输送机水平面形态计算模型 ............................................................ 47 4.4 刮板输送机水平面形态控制 ............................................................................... 49 4.5 本章小结 ............................................................................................................... 50 第五章 复杂工况下采煤机与刮板输送机协同监测试验 .................................................... 53 5.1 引言 ....................................................................................................................... 53 万方数据 太原理工大学硕士研究生学位论文 IX 5.2 试验设备与平台介绍 ........................................................................................... 53 5.2.1 试验设备介绍 ............................................................................................ 53 5.2.2 试验平台的搭建 ........................................................................................ 57 5.3 刮板输送机竖直面形态监测试验 ....................................................................... 58 5.3.1 刮板输送机竖直面形态监测试验平台 .................................................... 58 5.3.2 采煤机运动路径位姿监测试验 ................................................................ 59 5.3.3 试验结果及分析 ........................................................................................ 60 5.4 刮板输送机水平面形态监测试验 ....................................................................... 63 5.4.1 刮板输送机水平面形态监测试验平台 .................................................... 63 5.4.2 试验结果及分析 ........................................................................................ 65 5.5 本章小结 ............................................................................................................... 67 第六章 基于机器学习的刮板输送机形态预测方法 ............................................................ 69 6.1 引言 ....................................................................................................................... 69 6.2 机器学习基本理论 ............................................................................................... 69 6.3 基于支持向量机的刮板输送机形态预测方法 ................................................... 71 6.3.1 支持向量机的基本思想 ............................................................................ 71 6.3.2 基于支持向量机的刮板输送机形态预测 ................................................ 74 6.4 基于极限学习机的刮板输送机形态预测方法 ................................................... 78 6.4.1 极限学习机的基本思想 ............................................................................ 78 6.4.2 基于极限学习机的形态预测模型 ............................................................ 79 6.5 SVM 与 ELM 刮板输送机形态预测结果分析 .................................................... 81 6.6 本章小结 ............................................................................................................... 82 第七章 结论与展望 ................................................................................................................ 85 7.1 工作总结 ............................................................................................................... 85 7.2 主要结论 ............................................................................................................... 85 7.3 进一步工作展望 ................................................................................................... 86 万方数据 太原理工大学硕士研究生学位论文 X 参考文献 .................................................................................................................................. 89 致谢 .......................................................................................................................................... 99 攻读学位期间发表的论文 .................................................................................................... 101 一 学术论文(Academic Paper) ........................................................................... 101 二 发明专利(Invention Patent) ........................................................................... 101 三 获奖情况(Award) ........................................................................................... 101 四 主持科研项目(Research Project) ................................................................... 102 五 参加科研项目(Research Project) ................................................................... 102 万方数据 太原理工大学硕士研究生学位论文 1 第一章 绪论 1.1 课题来源 本课题来源于山西省研究生教育创新项目“复杂工况下采煤机与刮板输送机 协同状态监测方法研究”(2018SY019);山西省科技重大专项“采掘运装备数字 化集成设计技术与系统” (20111101040);山西省留学人员科技活动择优资助重点项目 (2016);山西省回国留学人员科研资助项目“煤矿采掘运装备虚拟现实场景交互 与装配仿真应用系统研究”(2016-043)。 1.2 引言 煤炭在我国所消耗的化石能源结构中占有非常重要地位,为国家能源安全与社会经 济的可持续发展提供了有力的保障。我国的煤炭资源储量丰富,可开发的储量要远大于 石油、天然气等其它化石能源,而且我国煤炭的开采历史悠久,具有经济性、可靠性、 稳定性和安全性的特点。在我国能源的长期发展规划中,当前乃至未来的十几年内,煤 炭仍将是支撑我国发展的主要能源
展开阅读全文

资源标签

最新标签

长按识别或保存二维码,关注学链未来公众号

copyright@ 2019-2020“矿业文库”网

矿业文库合伙人QQ群 30735420